Javascript must be enabled to continue!
Mechanisms of RORα-dependent effects of melatonin
View through CrossRef
The transcription factor RORα has not traditionally been attributed a fundamental role in the development of Th17 cells, but recent studies have shown that it is necessary for the formation of a pathogenic variant of Th17 cells, the so-called Th1-polarized Th17 (Th17.1). Since the transcriptional activity of RORα depends on ligand binding, the search for such ligands is highly relevant, and in this regard, melatonin is of particular interest. The question of the ability of RORα to directly bind melatonin remains open today; data on this problem are extremely contradictory. In 1995, I. Wiesenberg and colleagues identified RORα as a nuclear receptor for melatonin, demonstrating the hormone’s ability to enhance the binding of this factor to DNA and determining the dissociation constant for the interaction of RORα with melatonin using classical Scatchard analysis. In 2011, P.J. Lardone and colleagues “rediscovered” RORα as a receptor for melatonin by demonstrating the coprecipitation of melatonin with RORα. And in 2016, A.J. Slominski and colleagues published a paper that cast doubt on the possibility of melatonin binding to RORα based on molecular modeling of ligand-receptor interactions supported by functional studies. However, a careful analysis of these data indicates the ambiguity of this conclusion, allowing us to speak, rather, of medium or low binding affinity of the hormone to RORα, but not of its absence. This conclusion is also supported by the fact that RORα mediates many of the effects of melatonin, both physiological and pharmacological, including the regulation of circadian rhythms and oxidative metabolism, neuro- and cardioprotection, and control of the immune response. In general, the data available today allow us to consider the transcription factor RORα as a receptor for melatonin with medium affinity, although indirect regulation of this factor by the hormone is not excluded, and RORα-dependent mechanisms should contribute to the cellular response to melatonin, both under physiological conditions and in the case of pharmacological use of the hormone.
Title: Mechanisms of RORα-dependent effects of melatonin
Description:
The transcription factor RORα has not traditionally been attributed a fundamental role in the development of Th17 cells, but recent studies have shown that it is necessary for the formation of a pathogenic variant of Th17 cells, the so-called Th1-polarized Th17 (Th17.
1).
Since the transcriptional activity of RORα depends on ligand binding, the search for such ligands is highly relevant, and in this regard, melatonin is of particular interest.
The question of the ability of RORα to directly bind melatonin remains open today; data on this problem are extremely contradictory.
In 1995, I.
Wiesenberg and colleagues identified RORα as a nuclear receptor for melatonin, demonstrating the hormone’s ability to enhance the binding of this factor to DNA and determining the dissociation constant for the interaction of RORα with melatonin using classical Scatchard analysis.
In 2011, P.
J.
Lardone and colleagues “rediscovered” RORα as a receptor for melatonin by demonstrating the coprecipitation of melatonin with RORα.
And in 2016, A.
J.
Slominski and colleagues published a paper that cast doubt on the possibility of melatonin binding to RORα based on molecular modeling of ligand-receptor interactions supported by functional studies.
However, a careful analysis of these data indicates the ambiguity of this conclusion, allowing us to speak, rather, of medium or low binding affinity of the hormone to RORα, but not of its absence.
This conclusion is also supported by the fact that RORα mediates many of the effects of melatonin, both physiological and pharmacological, including the regulation of circadian rhythms and oxidative metabolism, neuro- and cardioprotection, and control of the immune response.
In general, the data available today allow us to consider the transcription factor RORα as a receptor for melatonin with medium affinity, although indirect regulation of this factor by the hormone is not excluded, and RORα-dependent mechanisms should contribute to the cellular response to melatonin, both under physiological conditions and in the case of pharmacological use of the hormone.
Related Results
Melatonin and mammary cancer: a short review.
Melatonin and mammary cancer: a short review.
Melatonin is an indolic hormone produced mainly by the pineal gland. The former hypothesis of its possible role in mammary cancer development was based on the evidence that melaton...
A Novel Protective Mechanism for Melatonin Against Acute Lung Injury: Preserving Mitochondrial Dynamic Equilibrium of Lung Epithelial Cells Through SIRT3-Dependent Deacetylation of SOD2
A Novel Protective Mechanism for Melatonin Against Acute Lung Injury: Preserving Mitochondrial Dynamic Equilibrium of Lung Epithelial Cells Through SIRT3-Dependent Deacetylation of SOD2
Abstract
Mitochondrial dynamic equilibrium of lung epithelial cells is disturbed during sepsis, which contributes to abnormal mitochondrial function and acute lung injury (...
Adrenergic and Cholinergic Regulation of in vitro Melatonin Release during Ontogeny in the Pineal Gland of Long Evans Rats
Adrenergic and Cholinergic Regulation of in vitro Melatonin Release during Ontogeny in the Pineal Gland of Long Evans Rats
Melatonin, produced by the pineal gland, plays an important role in a great variety of neuroendocrine functions. The rhythmic release of melatonin by the mammalian pineal gland is ...
Ocular Melatonin Rhythms in Teleost Fish
Ocular Melatonin Rhythms in Teleost Fish
Melatonin (<i>N</i>-acetyl-5-methoxytryptamine) is synthesized in the pineal organ and the retina of vertebrates. In some teleost species, ocular melatonin levels can e...
Melatonin and Seasonal Rhythms
Melatonin and Seasonal Rhythms
The pineal hormone melatonin plays a ubiquitous role in biology as a chemical mediator of the effects of season on animal physiology and behavior. Seasonal changes in night length ...
Therapeutic potential of melatonin in oral medicine and periodontology
Therapeutic potential of melatonin in oral medicine and periodontology
AbstractMelatonin (N‐acetyl‐5‐methoxy tryptamine) is a substance secreted by multiple organs in vertebrates. In addition to playing a part in the circadian cycle of the body, melat...
Immune-pineal-ocular Axis in Amphibians: Unveiling A Novel Connection
Immune-pineal-ocular Axis in Amphibians: Unveiling A Novel Connection
Synopsis
Melatonin is a hormone known as an endogenous temporal marker signaling the dark phase of the day. Although the eyes seem to be the main site of melatonin p...
Melatonin in Cardiovascular Diseases
Melatonin in Cardiovascular Diseases
Melatonin is an endocrine product released from the gland known as the pineal gland and is predominantly secreted during the night. Light exerts an inhibitory effect on melatonin s...

