Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The Weddell Sea region: an important precipitation channel to the interior of the Antarctic ice sheet as revealed by glaciochemical investigation of surface snow along the longest trans-Antarctic route

View through CrossRef
AbstractGlaciochemical analysis of surface snow samples, collected along a profile crossing the Antarctic ice sheet from the Larsen Ice Shelf, Antarctic Peninsula, via the Antarctic Plateau through South Pole, Vostok and Komsomolskaya to Mirny station (at the east margin of East Antarctica), shows that the Weddell Sea region is an important channel for air masses to the high plateau of the Antarctic ice sheet (>2000 m a.s.l.). This opinion is supported by the following. (1) The fluxes of sea-salt ions such as Na+, Mg2 + and CF display a decreasing trend from the west to the east of interior Antarctica. In |eneral, as sea-salt aerosols are injected into the atmosphere over the Antarctic ice sheet from the Weddell Sea, large aerosols tend to decrease. For the inland plateau, few large particles of sea-salt aerosol reach the area, and the sea-salt concentration levels are low (2) The high altitude of the East Antarctic plateau, as well as the polar cold high-pressure system, obstruct the intrusive air masses mainly from the South Indian Ocean sector. (3) For the coastal regions of the East Antarctic ice sheet, the elevation rises to 2000 m over a distance from several to several tens of km. High concentrations of sea salt exist in snow in East Antarctica but are limited to a narrow coastal zone. (4) Fluxes of calcium and non-sea-salt sulfate in snow from the interior plateau do not display an eastward-decreasing trend. Since calcium is mainly derived from crustal sources, and nssSO42- is a secondary aerosol, this again confirms that the eastward-declining tendency of sea-salt ions indicates the transfer direction of precipitation vapor.
Title: The Weddell Sea region: an important precipitation channel to the interior of the Antarctic ice sheet as revealed by glaciochemical investigation of surface snow along the longest trans-Antarctic route
Description:
AbstractGlaciochemical analysis of surface snow samples, collected along a profile crossing the Antarctic ice sheet from the Larsen Ice Shelf, Antarctic Peninsula, via the Antarctic Plateau through South Pole, Vostok and Komsomolskaya to Mirny station (at the east margin of East Antarctica), shows that the Weddell Sea region is an important channel for air masses to the high plateau of the Antarctic ice sheet (>2000 m a.
s.
l.
).
This opinion is supported by the following.
(1) The fluxes of sea-salt ions such as Na+, Mg2 + and CF display a decreasing trend from the west to the east of interior Antarctica.
In |eneral, as sea-salt aerosols are injected into the atmosphere over the Antarctic ice sheet from the Weddell Sea, large aerosols tend to decrease.
For the inland plateau, few large particles of sea-salt aerosol reach the area, and the sea-salt concentration levels are low (2) The high altitude of the East Antarctic plateau, as well as the polar cold high-pressure system, obstruct the intrusive air masses mainly from the South Indian Ocean sector.
(3) For the coastal regions of the East Antarctic ice sheet, the elevation rises to 2000 m over a distance from several to several tens of km.
High concentrations of sea salt exist in snow in East Antarctica but are limited to a narrow coastal zone.
(4) Fluxes of calcium and non-sea-salt sulfate in snow from the interior plateau do not display an eastward-decreasing trend.
Since calcium is mainly derived from crustal sources, and nssSO42- is a secondary aerosol, this again confirms that the eastward-declining tendency of sea-salt ions indicates the transfer direction of precipitation vapor.

Related Results

The importance of sea ice biota for the ecosystem in the northwestern Weddell Sea
The importance of sea ice biota for the ecosystem in the northwestern Weddell Sea
<p>The western Weddell Sea along the northward branch of the Weddell Gyre is a region of major outflow of various water masses, thick sea ice, and biogeochemical matt...
A textural approach to snow depth distribution on Antarctic sea ice
A textural approach to snow depth distribution on Antarctic sea ice
<p>Understanding the distribution of snow depth on Antarctic sea ice is critical to estimating the sea ice thickness distribution from laser altimetry data, such as f...
Combined measurement of snow depth and sea ice thickness by helicopter EM bird in McMurdo Sound, Antarctica
Combined measurement of snow depth and sea ice thickness by helicopter EM bird in McMurdo Sound, Antarctica
<p>Snow on sea ice is a controlling factor for ocean-atmosphere heat flux and thus ice thickness growth, and surface albedo. Active and passive microwave remote sensi...
Impact of glacial isostatic adjustment on the long-term stability of the Antarctic ice sheet
Impact of glacial isostatic adjustment on the long-term stability of the Antarctic ice sheet
<p>Projections of the contribution of the Antarctic ice sheet to future sea-level rise remain highly uncertain, especially on long timescales. One of the reasons for ...
Modelling the Hydro-fracture driven collapse of the Larsen B ice shelf
Modelling the Hydro-fracture driven collapse of the Larsen B ice shelf
Ice shelves play a key role in buttressing upstream ice - modulating the flow of grounded ice into the ocean and in turn affecting ice sheet contribution to sea level. Iceberg calv...
Antarctic sea ice types from active and passive microwave remote sensing
Antarctic sea ice types from active and passive microwave remote sensing
Abstract. Polar sea ice is one of the Earth’s climate components that has been significantly affected by the recent trend of global warming. While the sea ice area in the Arctic ha...
Holocene thinning history of David Glacier, Antarctica
Holocene thinning history of David Glacier, Antarctica
<p>The Antarctic Ice Sheet is a significant component of the Earth System, modulating Earth‘s sea level and climate. Present day and projected ice mass losses from Antarctica...
Seasonal Arctic sea ice predictability and prediction
Seasonal Arctic sea ice predictability and prediction
Arctic sea ice plays a central role in the Earth’s climate. Changes in the sea ice on seasonal-to-interannual timescales impact ecosystems, populations and a growing number of stak...

Back to Top