Javascript must be enabled to continue!
Surface characteristics at Dome A, Antarctica: first measurements and a guide to future ice-coring sites
View through CrossRef
AbstractAn assessment of the glaciological and meteorological characteristics of Dome A, the summit of the East Antarctic ice sheet, is made based on field investigations during the austral summer of 2004/05. Knowledge of these characteristics is critical for future international studies such as deep ice-core drilling. The assessment shows that: (1) Dome A is characterized by a very low 10m depth firn temperature, –58.3˚C (nearly 3˚C lower than at EPICA Dome C and 1˚C lower than at Vostok). (2) Automatic weather station (AWS) measurements of snow surface height and reference layers in a snow pit indicate the present-day snow accumulation rate at Dome A is within the range 1–3cmw.e. a–1. Densification models suggest a range of 1–2cmw.e. a–1. This is lower than at other sites along the ice divide of East Antarctica (IDEA). Annual layers at Dome A are thus potentially thinner than at other sites, so that a longer record is preserved in a given ice thickness. (3) The average wind speed observed at Dome A (<4ms–1) is lower than at other sites along IDEA. Together, these parameters, combined with radio-echo sounding data and information on the subglacial drainage distribution beneath Dome A, suggest Dome A as a candidate site for obtaining the oldest ice core.
International Glaciological Society
Title: Surface characteristics at Dome A, Antarctica: first measurements and a guide to future ice-coring sites
Description:
AbstractAn assessment of the glaciological and meteorological characteristics of Dome A, the summit of the East Antarctic ice sheet, is made based on field investigations during the austral summer of 2004/05.
Knowledge of these characteristics is critical for future international studies such as deep ice-core drilling.
The assessment shows that: (1) Dome A is characterized by a very low 10m depth firn temperature, –58.
3˚C (nearly 3˚C lower than at EPICA Dome C and 1˚C lower than at Vostok).
(2) Automatic weather station (AWS) measurements of snow surface height and reference layers in a snow pit indicate the present-day snow accumulation rate at Dome A is within the range 1–3cmw.
e.
a–1.
Densification models suggest a range of 1–2cmw.
e.
a–1.
This is lower than at other sites along the ice divide of East Antarctica (IDEA).
Annual layers at Dome A are thus potentially thinner than at other sites, so that a longer record is preserved in a given ice thickness.
(3) The average wind speed observed at Dome A (<4ms–1) is lower than at other sites along IDEA.
Together, these parameters, combined with radio-echo sounding data and information on the subglacial drainage distribution beneath Dome A, suggest Dome A as a candidate site for obtaining the oldest ice core.
Related Results
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
Viscous relaxation of Pluto's ice shell below Sputnik Planitia
Viscous relaxation of Pluto's ice shell below Sputnik Planitia
AbstractThe surface of Pluto is dominated by the Sputnik Planitia basin, possibly caused by an impact ~ 4 Gyr ago. To explain basin's unlikely position close to tidal axis with Cha...
Eccentricity variations trigger “subduction” in Europa’s ice shell
Eccentricity variations trigger “subduction” in Europa’s ice shell
IntroductionIcy moon Europa possesses one of the youngest surfaces in the Solar System. Overall smooth, yet rich in unique tectonic features, it records mostly extensional processe...
Wind tunnel experimentation of ice particles transport in Martian-like environment
Wind tunnel experimentation of ice particles transport in Martian-like environment
Introduction:  The transport of ice by wind plays a major role in the surface mass balance of polar caps [1, 2]. Ice can be redistributed by wind due to (1) transport of i...
Tephra deposits associated with silicic domes and lava flows
Tephra deposits associated with silicic domes and lava flows
Most phases of silicic lava dome growth have some associated explosive activity. Tephra produced during this activity have depositional characteristics, grain sizes, and grain shap...
Significant submarine ice loss from the Getz Ice Shelf, Antarctica
Significant submarine ice loss from the Getz Ice Shelf, Antarctica
Abstract. We present the first direct measurements of changes taking place at the base of the Getz Ice Shelf (GzIS) in West Antarctica. Our analysis is based on repeated airborne r...
Modelling the Hydro-fracture driven collapse of the Larsen B ice shelf
Modelling the Hydro-fracture driven collapse of the Larsen B ice shelf
Ice shelves play a key role in buttressing upstream ice - modulating the flow of grounded ice into the ocean and in turn affecting ice sheet contribution to sea level. Iceberg calv...
Exchanges of salts and volatiles in Europa’s hydrosphere
Exchanges of salts and volatiles in Europa’s hydrosphere
Ocean worlds have become a major focus of interest in exobiology and planetary science due to their internal structure and dynamics [1]. Among them, Europa is one of the most promi...

