Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Evaluation of Antioxidant, Cytotoxic, Mutagenic and Other Inhibitory Potentials of Green Synthesized Chitosan Nanoparticles

View through CrossRef
The current study was performed with aim of evaluating antioxidant, cytotoxicity, α-amylase, and α-glucosidase inhibitory activities and mutagenicity properties of Martynia annua mediated Chitosan nanoparticles (MAL-CNPs). The green synthesized MAL-CNPs were characterized and confirmed through several characterization techniques, including UV-visible spectroscopy (UV-Vis), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and dynamic light scattering (DLS). The HR-TEM analysis exhibited that the as-synthesized chitosan nanoparticles are spherical in shape. Furthermore, the DLS analysis exhibited that the average size of MAL-CNPs was 53 nm and the maximum diameter was 130.7 nm. The antioxidant activity results revealed that the MAL-CNPs showed DPPH (2,2-diphenyl-1-picrylhydrazyl) (66.78%) and H2O2 (91.65%) scavenging activities at 50 µg/mL concentration. The IC50 values were 2.431 μg/mL and 50 µg/mL for DPPH and H2O2, respectively. MTT (3-4, 5 dimethylthiazol-2yl-2, 5-diphenyltetrazolium bromide) assay results exhibited dose-dependent cytotoxicity found from 50 μg/mL concentration of MAL-CNPs. The MAL-CNPs showed remarkable α-glucosidase and α-amylase inhibitory activity (IC50 1.981 μg/mL and 161.8 μg/mL). No toxic effect of MAL-CNPs was found through the Ames test. Further, the study concluded that MAL-CNPs are non-toxic and possess adequate antioxidants and cytotoxicity activity against cancer cells, α-glucosidase, and α-amylase inhibitory activity. Hence, the MAL-CNPs were considered for biomedical applications after the assessment of their efficiency and safety.
Title: Evaluation of Antioxidant, Cytotoxic, Mutagenic and Other Inhibitory Potentials of Green Synthesized Chitosan Nanoparticles
Description:
The current study was performed with aim of evaluating antioxidant, cytotoxicity, α-amylase, and α-glucosidase inhibitory activities and mutagenicity properties of Martynia annua mediated Chitosan nanoparticles (MAL-CNPs).
The green synthesized MAL-CNPs were characterized and confirmed through several characterization techniques, including UV-visible spectroscopy (UV-Vis), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and dynamic light scattering (DLS).
The HR-TEM analysis exhibited that the as-synthesized chitosan nanoparticles are spherical in shape.
Furthermore, the DLS analysis exhibited that the average size of MAL-CNPs was 53 nm and the maximum diameter was 130.
7 nm.
The antioxidant activity results revealed that the MAL-CNPs showed DPPH (2,2-diphenyl-1-picrylhydrazyl) (66.
78%) and H2O2 (91.
65%) scavenging activities at 50 µg/mL concentration.
The IC50 values were 2.
431 μg/mL and 50 µg/mL for DPPH and H2O2, respectively.
MTT (3-4, 5 dimethylthiazol-2yl-2, 5-diphenyltetrazolium bromide) assay results exhibited dose-dependent cytotoxicity found from 50 μg/mL concentration of MAL-CNPs.
The MAL-CNPs showed remarkable α-glucosidase and α-amylase inhibitory activity (IC50 1.
981 μg/mL and 161.
8 μg/mL).
No toxic effect of MAL-CNPs was found through the Ames test.
Further, the study concluded that MAL-CNPs are non-toxic and possess adequate antioxidants and cytotoxicity activity against cancer cells, α-glucosidase, and α-amylase inhibitory activity.
Hence, the MAL-CNPs were considered for biomedical applications after the assessment of their efficiency and safety.

Related Results

Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may...
Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo
Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo
AbstractIn this study, chitosan and alginate were selected to prepare alginate/chitosan nanoparticles to load the drug lovastatin by the ionic gelation method. The synthesized nano...
Antimicrobial activity of ciprofloxacin-coated gold nanoparticles on selected pathogens
Antimicrobial activity of ciprofloxacin-coated gold nanoparticles on selected pathogens
Antibiotic resistance amongst bacterial pathogens is a crisis that has been worsening over recent decades, resulting in serious and often fatal infections that cannot be treated by...
Green Innovation in GTR Membranes: Combining Astaxanthin, <i>Aloe vera</i> and Chitosan for Periodontal Therapy- An <i>In Vitro</i> Study
Green Innovation in GTR Membranes: Combining Astaxanthin, <i>Aloe vera</i> and Chitosan for Periodontal Therapy- An <i>In Vitro</i> Study
Background: Periodontitis leads to tissue deterioration, prompting the need for effective regenerative therapies. Conventional barrier membranes, face challenges in mechanical stre...
BIODEGRADATION OF CHITOSAN MEMBRANE SCALES OF HARUAN FISH (Channa striata)-HYDROXYAPATITE IN ARTIFICIAL SALIVA SOLUTION
BIODEGRADATION OF CHITOSAN MEMBRANE SCALES OF HARUAN FISH (Channa striata)-HYDROXYAPATITE IN ARTIFICIAL SALIVA SOLUTION
Background: Membrane materials for surgical procedures using Guided Tissue Regeneration (GTR) are Polytetrafluoroethylene (PTFE) and collagen, but have the disadvantage of requirin...
Methotrexate Loaded Magnetic Nanoparticles as a Targeted Drug Delivery Device
Methotrexate Loaded Magnetic Nanoparticles as a Targeted Drug Delivery Device
Targeted drug delivery systems have been shown to be promising alternative for the conventional drug delivery methods. Among numerous nanocarriers developed for therapeutic applica...
Synthesis, Characterization and Antimicrobial Study of Chitosan Schiff Base Derivatives
Synthesis, Characterization and Antimicrobial Study of Chitosan Schiff Base Derivatives
Chitosan is natural, biodegradable, and biocompatible hydrophilic polysaccharide of â(1-4)-linked Dglucosamine and N-acetyl-D-glucosamine prepared from chitin. The remarkable biol...
Joint effect of temperature and insect chitosan on the heat resistance of Bacillus cereus spores in rice derivatives
Joint effect of temperature and insect chitosan on the heat resistance of Bacillus cereus spores in rice derivatives
SummaryThe heat resistance of Bacillus cereus spores inoculated in a rice substrate supplemented with insect chitosan as an alternative antimicrobial was studied. Two concentration...

Back to Top