Javascript must be enabled to continue!
Central extensions and bounded cohomology
View through CrossRef
It was shown by Gersten that a central extension of a finitely generated group is quasi-isometrically trivial provided that its Euler class is bounded. We say that a finitely generated group G satisfies Property QITB (quasi-isometrically trivial implies bounded) if the Euler class of any quasi-isometrically trivial central extension of G is bounded. We exhibit a finitely generated group G which does not satisfy Property QITB. This answers a question by Neumann and Reeves, and provides partial answers to related questions by Wienhard and Blank. We also prove that Property QITB holds for a large class of groups, including amenable groups, right-angled Artin groups, relatively hyperbolic groups with amenable peripheral subgroups, and 3-manifold groups.Finally, we show that Property QITB holds for every finitely presented group if a conjecture by Gromov on bounded primitives of differential forms holds as well.
Title: Central extensions and bounded cohomology
Description:
It was shown by Gersten that a central extension of a finitely generated group is quasi-isometrically trivial provided that its Euler class is bounded.
We say that a finitely generated group G satisfies Property QITB (quasi-isometrically trivial implies bounded) if the Euler class of any quasi-isometrically trivial central extension of G is bounded.
We exhibit a finitely generated group G which does not satisfy Property QITB.
This answers a question by Neumann and Reeves, and provides partial answers to related questions by Wienhard and Blank.
We also prove that Property QITB holds for a large class of groups, including amenable groups, right-angled Artin groups, relatively hyperbolic groups with amenable peripheral subgroups, and 3-manifold groups.
Finally, we show that Property QITB holds for every finitely presented group if a conjecture by Gromov on bounded primitives of differential forms holds as well.
Related Results
Shifted generic cohomology
Shifted generic cohomology
AbstractThe idea that the cohomology of finite groups might be fruitfully approached via the cohomology of ambient semisimple algebraic groups was first shown to be viable in the p...
ℓ∞-Cohomology: Amenability, relative hyperbolicity, isoperimetric inequalities and undecidability
ℓ∞-Cohomology: Amenability, relative hyperbolicity, isoperimetric inequalities and undecidability
We revisit Gersten’s [Formula: see text]-cohomology of groups and spaces, removing the finiteness assumptions required by the original definition while retaining its geometric natu...
Coarse Sheaf Cohomology
Coarse Sheaf Cohomology
A certain Grothendieck topology assigned to a metric space gives rise to a sheaf cohomology theory which sees the coarse structure of the space. Already constant coefficients produ...
Relative cohomology of complexes based on cotorsion pairs
Relative cohomology of complexes based on cotorsion pairs
Let [Formula: see text] be an associative ring with identity. The purpose of this paper is to establish relative cohomology theories based on cotorsion pairs in the setting of unbo...
Spectral sequences
Spectral sequences
Abstract
Spectral sequences play an important role in group cohomology because they provide a means of reducing cohomology in a complex situation to the cohomology o...
Magnitude cohomology
Magnitude cohomology
AbstractMagnitude homology was introduced by Hepworth and Willerton in the case of graphs, and was later extended by Leinster and Shulman to metric spaces and enriched categories. ...
Hodge–Dirac, Hodge-Laplacian and Hodge–Stokes operators in $L^p$ spaces on Lipschitz domains
Hodge–Dirac, Hodge-Laplacian and Hodge–Stokes operators in $L^p$ spaces on Lipschitz domains
This paper concerns Hodge–Dirac operators
D_{{}^\Vert}=d+\underline{\delta}
acting in
L^p(\Omega, ...
Logarithmic Poisson cohomology: example of calculation and application to prequantization
Logarithmic Poisson cohomology: example of calculation and application to prequantization
In this paper we introduce the notions of logarithmic Poisson structure and logarithmic principal Poisson structure. We prove that the latter induces a representation by logarithmi...

