Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The Biological Functions of Glutathione Revisited in Arabidopsis Transgenic Plants with Altered Glutathione Levels

View through CrossRef
Abstract A functional analysis of the role of glutathione in protecting plants from environmental stress was undertaken by studying Arabidopsis that had been genetically modified to have altered glutathione levels. The steady-state glutathione concentration in Arabidopsis plants was modified by expressing the cDNA for γ-glutamyl-cysteine synthetase (GSH1) in both the sense and antisense orientation. The resulting plants had glutathione levels that ranged between 3% and 200% of the level in wild-type plants. Arabidopsis plants with low glutathione levels were hypersensitive to Cd due to the limited capacity of these plants to make phytochelatins. Plants with the lowest levels of reduced glutathione (10% of wild type) were sensitive to as little as 5 μm Cd, whereas those with 50% wild-type levels required higher Cd concentrations to inhibit growth. Elevating glutathione levels did not increase metal resistance. It is interesting that the plants with low glutathione levels were also less able to accumulate anthocyanins supporting a role for glutathione S-transferases for anthocyanin formation or for the vacuolar localization and therefore accumulation of these compounds. Plants with less than 5% of wild-type glutathione levels were smaller and more sensitive to environmental stress but otherwise grew normally.
Title: The Biological Functions of Glutathione Revisited in Arabidopsis Transgenic Plants with Altered Glutathione Levels
Description:
Abstract A functional analysis of the role of glutathione in protecting plants from environmental stress was undertaken by studying Arabidopsis that had been genetically modified to have altered glutathione levels.
The steady-state glutathione concentration in Arabidopsis plants was modified by expressing the cDNA for γ-glutamyl-cysteine synthetase (GSH1) in both the sense and antisense orientation.
The resulting plants had glutathione levels that ranged between 3% and 200% of the level in wild-type plants.
Arabidopsis plants with low glutathione levels were hypersensitive to Cd due to the limited capacity of these plants to make phytochelatins.
Plants with the lowest levels of reduced glutathione (10% of wild type) were sensitive to as little as 5 μm Cd, whereas those with 50% wild-type levels required higher Cd concentrations to inhibit growth.
Elevating glutathione levels did not increase metal resistance.
It is interesting that the plants with low glutathione levels were also less able to accumulate anthocyanins supporting a role for glutathione S-transferases for anthocyanin formation or for the vacuolar localization and therefore accumulation of these compounds.
Plants with less than 5% of wild-type glutathione levels were smaller and more sensitive to environmental stress but otherwise grew normally.

Related Results

Development and reproduction of Tetranychus cinnabarinus (Acari: Tetranychiae) on transgenic insect-resistant cotton plants
Development and reproduction of Tetranychus cinnabarinus (Acari: Tetranychiae) on transgenic insect-resistant cotton plants
The effects of two insect-resistant transgenic cotton strains (transgenic Bt pest-resistant cotton Zhongkangza 5 and Lumianyan 23, transgenic Bt+CpTI pest-resistant cotton sGK958 a...
Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco
Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco
Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit ...
e0061 The modulation of dilated cardiomyopathy by Hepc1 in cTnTR141W transgenic mice
e0061 The modulation of dilated cardiomyopathy by Hepc1 in cTnTR141W transgenic mice
Objective Iron regulatory hormone hepcidin is possible to be possibly involved in the physiological function of heart and pathogenesis of heart disease. The curre...
e0048 CYP2E1 increases oxidative stress and induces apoptosis of cardio myocytes in transgenic mice
e0048 CYP2E1 increases oxidative stress and induces apoptosis of cardio myocytes in transgenic mice
Objective Cytochrome P450 2E1 (CYP2E1) is an effective generator of reactive oxygen species, such as the superoxide anion radical and hydrogen peroxide. The expre...
Behavioral responses and development of larvae and adult of Cnaphalocrocis medinalis (Guenée) on transgenic Bt rice
Behavioral responses and development of larvae and adult of Cnaphalocrocis medinalis (Guenée) on transgenic Bt rice
Abstract Background In general, it was observed that the transgene expression in transgenic plants did not alter the biochemical composition and phenotypes of transfor...
Enhanced Tolerance to Oxidative Stress in Transgenic Arabidopsis Plants Expressing Proteins of Unknown Function    
Enhanced Tolerance to Oxidative Stress in Transgenic Arabidopsis Plants Expressing Proteins of Unknown Function    
Abstract Over one-quarter of all plant genes encode proteins of unknown function that can be further classified as proteins with obscure features (POFs), which lack ...
Engineered resistance and risk assessment associated with insecticidal and weeds resistant transgenic cotton using wister rat model
Engineered resistance and risk assessment associated with insecticidal and weeds resistant transgenic cotton using wister rat model
AbstractStacking multiple genes into cotton crop to cop up multiple biotic stresses such as insects and weeds is a promising tool to save crop from losses. Transgenic cotton variet...
Downregulation of the CYP2E1 ameliorates oxidative stress and apoptosis
Downregulation of the CYP2E1 ameliorates oxidative stress and apoptosis
Objective Cytochrome P450 2E1 (CYP2E1) is an effective generator of reactive oxygen species, and it is known to be regulated in the course of progression of myoca...

Back to Top