Javascript must be enabled to continue!
A Novel Transverse Flux Permanent Magnet Disk Wind Power Generator with H-Shaped Stator Cores
View through CrossRef
This paper presents a novel transverse flux permanent magnet disk generator (TFPMDG) for wind power generation. The main features of its structure are the modular H-shaped stator cores and two simple rotor disks. What is different from the structures introduced in the references is that each H-shaped stator core is formed by two T-shaped iron cores and a permanent magnet (PM) rather than a complete H-shaped core, which makes the manufacturing simpler and easier. Each rotor disk consists of a rotor holder and several rotor bars, resulting in high robustness and reliability. Moreover, two circular coils in the H-shaped stator cores together with the stator disk are sandwiched by the two rotor disks, which improves the utilization of PMs. In this paper, the proposed TFPMDG is investigated in detail. Firstly, the structure and operating principle are introduced. Then, the magnetic circuit method is used to analyze the TFPMDG. Next, the three-dimensional (3D) finite element method (FEM) is employed to compute the magnetic field distribution and EMF at no load. According to the calculation result, the other three TFPMDGs with different shapes of rotor cores are proposed and analyzed for better back EMF, and then a generator with good performance is selected for load analysis. Finally, a prototype is fabricated and tested, and the simulated results are compared with the measured ones, which proves the rationality of the simulated results.
Title: A Novel Transverse Flux Permanent Magnet Disk Wind Power Generator with H-Shaped Stator Cores
Description:
This paper presents a novel transverse flux permanent magnet disk generator (TFPMDG) for wind power generation.
The main features of its structure are the modular H-shaped stator cores and two simple rotor disks.
What is different from the structures introduced in the references is that each H-shaped stator core is formed by two T-shaped iron cores and a permanent magnet (PM) rather than a complete H-shaped core, which makes the manufacturing simpler and easier.
Each rotor disk consists of a rotor holder and several rotor bars, resulting in high robustness and reliability.
Moreover, two circular coils in the H-shaped stator cores together with the stator disk are sandwiched by the two rotor disks, which improves the utilization of PMs.
In this paper, the proposed TFPMDG is investigated in detail.
Firstly, the structure and operating principle are introduced.
Then, the magnetic circuit method is used to analyze the TFPMDG.
Next, the three-dimensional (3D) finite element method (FEM) is employed to compute the magnetic field distribution and EMF at no load.
According to the calculation result, the other three TFPMDGs with different shapes of rotor cores are proposed and analyzed for better back EMF, and then a generator with good performance is selected for load analysis.
Finally, a prototype is fabricated and tested, and the simulated results are compared with the measured ones, which proves the rationality of the simulated results.
Related Results
PENGEMBANGAN PROTOTIPE GENERATOR AXIAL FLUX PERMANENT MAGNET (AFPM) DENGAN MENGGUNAKAN MAGNET NdFeB BERBENTUK COIN
PENGEMBANGAN PROTOTIPE GENERATOR AXIAL FLUX PERMANENT MAGNET (AFPM) DENGAN MENGGUNAKAN MAGNET NdFeB BERBENTUK COIN
Desain generator aksial semakin dikembangkan untuk meningkatkan kinerja generator.Salah satu generator tipe aksial yang dikembangkan yakni, Axial Field Permanent Magnetik(AFPM) yan...
Determining the relationship between the speed of motion of large permanent magnets and the trajectory of implants in magnetic stereotaxic systems
Determining the relationship between the speed of motion of large permanent magnets and the trajectory of implants in magnetic stereotaxic systems
Background: The magnetic stereotaxic system is a new type of neurosurgical intervention that is in the experimental stage. This method allows the implant to be controlled non-conta...
Current Source Converter Based Offshore Wind Farm: Configuration and Control
Current Source Converter Based Offshore Wind Farm: Configuration and Control
Recently, offshore wind farms have emerged as the most promising sector in the global renewable energy industry. The main reasons for the rapid development of offshore wind farms i...
Current Source Converter Based Offshore Wind Farm: Configuration and Control
Current Source Converter Based Offshore Wind Farm: Configuration and Control
Recently, offshore wind farms have emerged as the most promising sector in the global renewable energy industry. The main reasons for the rapid development of offshore wind farms i...
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Background:
In a wind farm, the wind speed of the downstream wind turbine will be
lower than the wind speed of the upstream wind turbine due to the influence of the wake. Therefore...
wLEACH: Real-Time Meteorological Data Based Wind LEACH
wLEACH: Real-Time Meteorological Data Based Wind LEACH
Introduction:Nowadays, Wireless Sensor Network (WSN) plays an important role in various fields. The limited power capability of the sensor nodes in the WSN brings constraints on th...
Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine
Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine
Background:
The wind turbine is divided into a horizontal axis and a vertical axis depending
on the relative positions of the rotating shaft and the ground. The advantage of the ch...
Savonius Rotor for Offshore Wind Energy Conversion
Savonius Rotor for Offshore Wind Energy Conversion
Abstract
Analysis of performance is presented for wind energy conversion by a Savonius type vertical axis rotor configured for generation of electrical power. The...


