Javascript must be enabled to continue!
The Lattice Boltzmann Equation
View through CrossRef
Abstract
Over the past near three decades, the Lattice Boltzmann method has gained a prominent role as an efficient computational method for the numerical simulation of a wide variety of complex states of flowing matter across a broad range of scales, from fully developed turbulence, to multiphase micro-flows, all the way down to nano-biofluidics and lately, even quantum-relativistic subnuclear fluids. After providing a self-contained introduction to the kinetic theory of fluids and a thorough account of its transcription to the lattice framework, this book presents a survey of the major developments which have led to the impressive growth of the Lattice Boltzmann across most walks of fluid dynamics and its interfaces with allied disciplines, such as statistical physics, material science, soft matter and biology. This includes recent developments of Lattice Boltzmann methods for non-ideal fluids, micro- and nanofluidic flows with suspended bodies of assorted nature and extensions to strong non-equilibrium flows beyond the realm of continuum fluid mechanics. In the final part, the book also presents the extension of the Lattice Boltzmann method to quantum and relativistic fluids, in an attempt to match the major surge of interest spurred by recent developments in the area of strongly interacting holographic fluids, such as quark-gluon plasmas and electron flows in graphene. It is hoped that this book may provide a source information and possibly inspiration to a broad audience of scientists dealing with the physics of classical and quantum flowing matter across many scales of motion.
Title: The Lattice Boltzmann Equation
Description:
Abstract
Over the past near three decades, the Lattice Boltzmann method has gained a prominent role as an efficient computational method for the numerical simulation of a wide variety of complex states of flowing matter across a broad range of scales, from fully developed turbulence, to multiphase micro-flows, all the way down to nano-biofluidics and lately, even quantum-relativistic subnuclear fluids.
After providing a self-contained introduction to the kinetic theory of fluids and a thorough account of its transcription to the lattice framework, this book presents a survey of the major developments which have led to the impressive growth of the Lattice Boltzmann across most walks of fluid dynamics and its interfaces with allied disciplines, such as statistical physics, material science, soft matter and biology.
This includes recent developments of Lattice Boltzmann methods for non-ideal fluids, micro- and nanofluidic flows with suspended bodies of assorted nature and extensions to strong non-equilibrium flows beyond the realm of continuum fluid mechanics.
In the final part, the book also presents the extension of the Lattice Boltzmann method to quantum and relativistic fluids, in an attempt to match the major surge of interest spurred by recent developments in the area of strongly interacting holographic fluids, such as quark-gluon plasmas and electron flows in graphene.
It is hoped that this book may provide a source information and possibly inspiration to a broad audience of scientists dealing with the physics of classical and quantum flowing matter across many scales of motion.
Related Results
Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type
Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type
Micro-scale flow is a very important and prominent problem in the design and application of micro-electromechanical systems. With the decrease of the scale, effects, such as viscou...
Gas Separation by Using Spiral Wound Membrane
Gas Separation by Using Spiral Wound Membrane
Spiral wound membrane is used in several industrial purification processes such as desalination, food industries and gas separation. It has been shown that membrane performance cou...
Computational vademecums for lattice materials using algebraic PGD
Computational vademecums for lattice materials using algebraic PGD
This dissertation is motivated by the concept of materials by design. Focusing on structures, this states that the properties in a mechanical component are not only inherited by it...
Effect of lattice mismatch stress on magnetic domain of epitaxial single crystal (BiTm)3(GaFe)5O12 film
Effect of lattice mismatch stress on magnetic domain of epitaxial single crystal (BiTm)3(GaFe)5O12 film
Yttrium iron garnet (YIG) film is a kind of magnetic film and has been investigated extensively because of its excellent magnetic properties and various applications in different f...
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
Abstract
In recent years, certain forms of the Boltzmann equation--now going by the name of "Lattice Boltzmann equation" (LBE)--have emerged which relinquish most ma...
Thermal lattice BGK models for fluid dynamics
Thermal lattice BGK models for fluid dynamics
As an alternative in modeling fluid dynamics, the Lattice Boltzmann method has attracted considerable attention. In this thesis, we shall present a general form of thermal Lattice ...
A consistent generalized model-based lattice Boltzmann flux solver for incompressible porous flows
A consistent generalized model-based lattice Boltzmann flux solver for incompressible porous flows
The recently developed lattice Boltzmann flux solver (PLBFS) for the incompressible porous flow is free from the limitations of coupled streaming time step and the mesh spacing, an...
Low Dissipative Entropic Lattice Boltzmann Method
Low Dissipative Entropic Lattice Boltzmann Method
In the entropic lattice Boltzmann approach, the stability properties are governed by the parameter α, which in turn affects the viscosity of a flow. The variation of this parameter...

