Javascript must be enabled to continue!
Genetic Mechanism of Geothermal Anomaly in the Gaoyang Uplift of the Jizhong Depression
View through CrossRef
The Gaoyang uplift is rich in geothermal resources, but there are few studies on the regional geothermal genetic mechanism. A large number of geothermal wells fail in position calculation because of a shortage of basis. By using the methods of P-wave velocity structure imaging and magnetotelluric sounding, it draws the following conclusions: 1) The crustal thickness in the Gaoyang uplift area is relatively thin, about 32 km; 2) The cutting depth of the Gaoyang East fault exceeds 28 km and has reached the bottom of the lower crust. It is a large tensile fault that provides a channel for mantle heat flow into the shallow crust; 3) The Gaoyang uplift and its surrounding depressions form a concave-convex base fluctuation mode, which is conducive to the accumulation of heat flow to the uplift; 4) The deep carbonate thermal reservoir in the Gaoyang uplift is overlaid with Cenozoic sand and mudstone strata, with a thickness of more than 3000 m and low thermal conductivity, which is conducive to the preservation of thermal storage heat. Therefore, the shortening of the heat conduction path caused by regional crustal thinning, convective heat conduction of large faults, concave-convex structure, and thick Cenozoic caprock are the reasons why the heat reservoir temperature in the Gaoyang uplift is higher than that around, which provides a theoretical basis for geothermal development and utilization.
Frontiers Media SA
Title: Genetic Mechanism of Geothermal Anomaly in the Gaoyang Uplift of the Jizhong Depression
Description:
The Gaoyang uplift is rich in geothermal resources, but there are few studies on the regional geothermal genetic mechanism.
A large number of geothermal wells fail in position calculation because of a shortage of basis.
By using the methods of P-wave velocity structure imaging and magnetotelluric sounding, it draws the following conclusions: 1) The crustal thickness in the Gaoyang uplift area is relatively thin, about 32 km; 2) The cutting depth of the Gaoyang East fault exceeds 28 km and has reached the bottom of the lower crust.
It is a large tensile fault that provides a channel for mantle heat flow into the shallow crust; 3) The Gaoyang uplift and its surrounding depressions form a concave-convex base fluctuation mode, which is conducive to the accumulation of heat flow to the uplift; 4) The deep carbonate thermal reservoir in the Gaoyang uplift is overlaid with Cenozoic sand and mudstone strata, with a thickness of more than 3000 m and low thermal conductivity, which is conducive to the preservation of thermal storage heat.
Therefore, the shortening of the heat conduction path caused by regional crustal thinning, convective heat conduction of large faults, concave-convex structure, and thick Cenozoic caprock are the reasons why the heat reservoir temperature in the Gaoyang uplift is higher than that around, which provides a theoretical basis for geothermal development and utilization.
Related Results
Study on Chemical Genesis of Deep Geothermal Fluid in Gaoyang Geothermal Field
Study on Chemical Genesis of Deep Geothermal Fluid in Gaoyang Geothermal Field
Geothermal resources are clean energy with a great potential for development and utilization. Gaoyang geothermal field, located in the middle of the raised area in Hebei province, ...
Genesis Mechanism and Resource Evaluation of Low-Temperature Hydrothermal Geothermal Fields in Wenquan County, Xinjiang
Genesis Mechanism and Resource Evaluation of Low-Temperature Hydrothermal Geothermal Fields in Wenquan County, Xinjiang
Abstract
The Wenquan County area in Xinjiang has a large number of hot springs and rich geothermal resources, with high potential for geothermal resource development and ut...
Heat Accumulation Mechanism of the Gaoyang Carbonatite Geothermal Field, Hebei Province, North China
Heat Accumulation Mechanism of the Gaoyang Carbonatite Geothermal Field, Hebei Province, North China
From 2019 to 2021, we constructed two high-productivity geothermal wells with wellhead temperatures of 109.2 and 123.4°C in the Gaoyang geothermal field. Based on the two wells, it...
Introduction to the geothermal play and reservoir geology of the Netherlands
Introduction to the geothermal play and reservoir geology of the Netherlands
Abstract
The Netherlands has ample geothermal resources. During the last decade, development of these resources has picked up fast. In 2007 one geothermal system had been realis...
Geothermal Energy Production in Venezuela: Challenges and Opportunities
Geothermal Energy Production in Venezuela: Challenges and Opportunities
Abstract
Geothermal energy is a useful source for the generation of electricity, heat, cooling, mineral extraction, oxygen, and hydrogen. For several decades, Venezu...
Geothermal Resource Evaluation Based on Geological Modeling in Fushan Sag, Beibuwan Basin
Geothermal Resource Evaluation Based on Geological Modeling in Fushan Sag, Beibuwan Basin
ABSTRACT:
Fushan Sag is in the south of Beibuwan Basin, with rich geothermal resources and large development potential. Based on the regional geological backgroun...
Storage Capacity of Geothermal Resources in Gaoling Group over the Eastern Half of Xi’an Depression
Storage Capacity of Geothermal Resources in Gaoling Group over the Eastern Half of Xi’an Depression
Weighted element method is proposed in this paper to improve the accuracy of calculating storage capacity of geothermal reservoirs. By making full use of all geothermal wells in th...
Geodetic monitoring of surface deformation for mitigating induced seismicity in Bavarian geothermal operations
Geodetic monitoring of surface deformation for mitigating induced seismicity in Bavarian geothermal operations
Geothermal energy is a significant source of clean, renewable energy, and the Bavarian Molasse Basin demonstrates exceptional potential for its development. Over the past two decad...

