Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Healing of fault surfaces: a field vs. experimental perspective

View through CrossRef
“Fault healing” is the ability of fault rocks to recover strength after rupture, due to a combination of several physical processes that include cementation, compaction, asperity growth etc. Healing is fundamental in the earthquake physics because it allows for the repeated accumulation of energy along faults over multiple seismic cycles. Fault healing is commonly studied in the laboratory, through Slide-Hold-Slide (SHS) tests and cementation experiments. However, laboratory measurements and the microstructures of experimental fault rocks are difficult to compare with natural rocks, due to the difference in kinetics of physical mechanisms and the small spatio-temporal scale of experiments.Here, we review the field and microstructural evidence of various processes of fault healing along a carbonatic fault surface, taking advantage of an outstanding case study: the Pietrasanta Normal Fault (NW Tuscany, Italy). In the field, the most common evidence of fault healing is the occurrence of cohesive fault rocks (cataclasites) and veins, but other fault surface properties may influence the re-strengthening of fault surfaces: e.g. adhesion phenomena (sidewall ripouts and fault surface patches) and geometrical complexity.We compare these observations with frictional healing experiments carried out on carbonatic fault rocks, in which both fault gouges and cohesive slip surfaces were used. We propose that a fault surface composed by “patches” of cohesive fault rocks bounded by anastomosing slip zones are the result of complex cycles of gouge formation and healing, which modulate the interplay of adhesion and localization along the fault surface.
Title: Healing of fault surfaces: a field vs. experimental perspective
Description:
“Fault healing” is the ability of fault rocks to recover strength after rupture, due to a combination of several physical processes that include cementation, compaction, asperity growth etc.
Healing is fundamental in the earthquake physics because it allows for the repeated accumulation of energy along faults over multiple seismic cycles.
Fault healing is commonly studied in the laboratory, through Slide-Hold-Slide (SHS) tests and cementation experiments.
However, laboratory measurements and the microstructures of experimental fault rocks are difficult to compare with natural rocks, due to the difference in kinetics of physical mechanisms and the small spatio-temporal scale of experiments.
Here, we review the field and microstructural evidence of various processes of fault healing along a carbonatic fault surface, taking advantage of an outstanding case study: the Pietrasanta Normal Fault (NW Tuscany, Italy).
In the field, the most common evidence of fault healing is the occurrence of cohesive fault rocks (cataclasites) and veins, but other fault surface properties may influence the re-strengthening of fault surfaces: e.
g.
adhesion phenomena (sidewall ripouts and fault surface patches) and geometrical complexity.
We compare these observations with frictional healing experiments carried out on carbonatic fault rocks, in which both fault gouges and cohesive slip surfaces were used.
We propose that a fault surface composed by “patches” of cohesive fault rocks bounded by anastomosing slip zones are the result of complex cycles of gouge formation and healing, which modulate the interplay of adhesion and localization along the fault surface.

Related Results

Integration Techniques of Fault Detection and Isolation Using Interval Observers
Integration Techniques of Fault Detection and Isolation Using Interval Observers
An interval observer has been illustrated to be a suitable approach to detect and isolate faults affecting complex dynamical industrial systems. Concerning fault detection, interv...
Decomposition and Evolution of Intracontinental Strike‐Slip Faults in Eastern Tibetan Plateau
Decomposition and Evolution of Intracontinental Strike‐Slip Faults in Eastern Tibetan Plateau
Abstract:Little attention had been paid to the intracontinental strike‐slip faults of the Tibetan Plateau. Since the discovery of the Longriba fault using re‐measured GPS data in 2...
Permeability models for carbonate fault cores
Permeability models for carbonate fault cores
<p>The present contribution focuses on carbonates fault cores exposed in central and southern Italy, which crosscut Mesozoic limestones and dolostones, pertain to 10&...
Fault stability transition with slip and wear production: laboratory constraints
Fault stability transition with slip and wear production: laboratory constraints
Large earthquakes take place on mature faults with hundreds of meters to kilometres of cumulative slip. At shallow depths, the fault zone is generally composed of non-cohesive rock...
Low-temperature thermochronology of fault zones
Low-temperature thermochronology of fault zones
<p>Thermal signatures as well as timing of fault motions can be constrained by thermochronological analyses of fault-zone rocks (e.g., Tagami, 2012, 2019).&#1...
Structural Characteristics and Evolution Mechanism of Paleogene Faults in the Central Dongying Depression, Bohai Bay Basin
Structural Characteristics and Evolution Mechanism of Paleogene Faults in the Central Dongying Depression, Bohai Bay Basin
Abstract This study used the growth index, fault activity rate and fault distance burial depth curve methods to analyze the characteristics of fault activity in the central...
Data-driven Fault Diagnosis for Cyber-Physical Systems
Data-driven Fault Diagnosis for Cyber-Physical Systems
The concept of Industry 4.0 uses cyber-physical systems and the Internet of Things to create "smart factories" that enable automated and connected production. However, the complex ...
Performance of Self-Healing Cementitious Composites Using Aligned Tubular Healing Fiber
Performance of Self-Healing Cementitious Composites Using Aligned Tubular Healing Fiber
From the perspective of improving the self-healing method in construction, a tubular healing fiber was adopted as a container to improve the encapsulation capacity, which was avail...

Back to Top