Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

First-principle study of the oxygen adsorption on Zr surface with Nb or Ge

View through CrossRef
It is observed that the addition of Nb or Ge to Zr alloy can improve its corrosion resistance. Because of the extreme importance of the mechanism of oxidation to corrosion properties of Zr alloy, we systematically investigate the O adsorption properties on pure Zr surface and Zr surface with Nb or Ge using first-principle calculations based on density functional theory. Firstly, we present the absorption energies to reveal the influences of Nb and Ge on the O absorption capacity of Zr surfaces, resepctively. According to the calculated absorption energies, we find that Nb and Ge reduce the oxygen absorption capacities of most of surfaces, and the only exception is that Nb enhances the oxygen absorption capacity of Zr(1120) surface. Moreover, the absorption energy of O at favorable site on Zr(0001) surface is much lower than on Zr(1010) or (1120) surface. Therefore, the initial oxidation of polycrystalline Zr should occur at Zr(0001) surface and the absorption capacity of this surface takes a predominant role in the initial oxidation of polycrystalline surface. Secondly, the segregation of Nb or Ge in Zr alloy is anisotropic. We find that the segregation of Ge to surface is exothermic, while the segregation of Nb to surface is endothermic. Nb and Ge migrate to Zr(0001) surface more easily than to Zr(1120) and Zr(1010) surfaces. Therefore, the influence of Nb or Ge on absorption property of Zr(0001) is much larger than that of Zr(1010) or (1120) surface. Based on the adsorption and segregation properties of Nb and Ge on Zr surfaces, both Nb and Ge can reduce the oxygen absorption capacity of Zr surface and inhibit the initial oxidation of Zr alloy surface, which can be used to understand the experimental observation that Nb and Ge can improve the corrosion resistance of Zr alloy. Finally, the electronic structure analysis shows that the influences of Nb and Ge on oxygen adsorption capacity of Zr surface are exerted by changing the d-band distribution. According to Hammer-Norskov d-band center theory, the absorption energy of absorpate on transition metal surface is mainly determined by d-band center. The addition of Nb or Ge to the Zr surface changes the location of d-band of the surface, which results in the variation of absorption energy of O atom on the Zr surface. For absorption at top site on each surface, it is found that the absorption energy of O only depends on the d-band center of the surface atom below the O atoms. However, for absorption at favorable sites on each surface, the absorption energy of O atom is influenced not only by the d-band center of surface atom, but also by atomic structural properties of the surface.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: First-principle study of the oxygen adsorption on Zr surface with Nb or Ge
Description:
It is observed that the addition of Nb or Ge to Zr alloy can improve its corrosion resistance.
Because of the extreme importance of the mechanism of oxidation to corrosion properties of Zr alloy, we systematically investigate the O adsorption properties on pure Zr surface and Zr surface with Nb or Ge using first-principle calculations based on density functional theory.
Firstly, we present the absorption energies to reveal the influences of Nb and Ge on the O absorption capacity of Zr surfaces, resepctively.
According to the calculated absorption energies, we find that Nb and Ge reduce the oxygen absorption capacities of most of surfaces, and the only exception is that Nb enhances the oxygen absorption capacity of Zr(1120) surface.
Moreover, the absorption energy of O at favorable site on Zr(0001) surface is much lower than on Zr(1010) or (1120) surface.
Therefore, the initial oxidation of polycrystalline Zr should occur at Zr(0001) surface and the absorption capacity of this surface takes a predominant role in the initial oxidation of polycrystalline surface.
Secondly, the segregation of Nb or Ge in Zr alloy is anisotropic.
We find that the segregation of Ge to surface is exothermic, while the segregation of Nb to surface is endothermic.
Nb and Ge migrate to Zr(0001) surface more easily than to Zr(1120) and Zr(1010) surfaces.
Therefore, the influence of Nb or Ge on absorption property of Zr(0001) is much larger than that of Zr(1010) or (1120) surface.
Based on the adsorption and segregation properties of Nb and Ge on Zr surfaces, both Nb and Ge can reduce the oxygen absorption capacity of Zr surface and inhibit the initial oxidation of Zr alloy surface, which can be used to understand the experimental observation that Nb and Ge can improve the corrosion resistance of Zr alloy.
Finally, the electronic structure analysis shows that the influences of Nb and Ge on oxygen adsorption capacity of Zr surface are exerted by changing the d-band distribution.
According to Hammer-Norskov d-band center theory, the absorption energy of absorpate on transition metal surface is mainly determined by d-band center.
The addition of Nb or Ge to the Zr surface changes the location of d-band of the surface, which results in the variation of absorption energy of O atom on the Zr surface.
For absorption at top site on each surface, it is found that the absorption energy of O only depends on the d-band center of the surface atom below the O atoms.
However, for absorption at favorable sites on each surface, the absorption energy of O atom is influenced not only by the d-band center of surface atom, but also by atomic structural properties of the surface.

Related Results

Preparation of Nylon Based Magnetic Adsorption Materials and Their Adsorption Properties for Heavy Metal Ions
Preparation of Nylon Based Magnetic Adsorption Materials and Their Adsorption Properties for Heavy Metal Ions
Abstract Wastewater containing heavy metal ions poses great harm to human health and the environment. The adsorption materials used in traditional adsorption methods, such ...
Adsorption of chlorophenol by activated carbon from mixtures of long flame coal and secondary coking products.
Adsorption of chlorophenol by activated carbon from mixtures of long flame coal and secondary coking products.
ADSORPTION OF CHLOROPHENOL BY ACTIVATED CARBON FROM MIXTURES OF LONG FLAME COAL AND SECONDARY COKING PRODUCTS © V.А. Кucherenko, Doctor of Chemical Sciences, Ju.V. Таmarkina, PhD i...
High Concentration Oxygen and Hypercapnia in Respiratory Disease
High Concentration Oxygen and Hypercapnia in Respiratory Disease
<p>Oxygen-induced elevations in arterial carbon dioxide tension have been demonstrated in patients with chronic obstructive pulmonary disease (COPD), asthma, pneumonia, obesi...
Closed-Loop Oxygen Control
Closed-Loop Oxygen Control
<p>Guidelines recommend that oxygen should be titrated to achieve a target oxygen saturation (SpO2 ) range in acutely unwell patients, a concept colloquially known as “swimmi...
WITHDRAWN: Study on Adsorption Properties of Loess Calcareous Nodules to Heavy Metalions In Aqueous-solution
WITHDRAWN: Study on Adsorption Properties of Loess Calcareous Nodules to Heavy Metalions In Aqueous-solution
Abstract Using calcareous calcareous tuberculosis as adsorbent and heavy metal ions (Cu2+, Zn2+, Cd2+ and Pb2+) as adsorbents, different particle size, adsorption time, pH,...
Adsorption Behavior Study of Shale Gas: Models and New Combination Approach
Adsorption Behavior Study of Shale Gas: Models and New Combination Approach
Abstract Comparison of different adsorption models in the application of shale reservoir is performed, adsorption capability of shale is reconstructed by the combina...
Magnetic Nanocomposites Revolutionize Heavy Metal Adsorption for Environmental Cleanup
Magnetic Nanocomposites Revolutionize Heavy Metal Adsorption for Environmental Cleanup
General background: Magnetic nanocomposites have garnered significant attention due to their multifunctional properties, particularly in environmental remediation, where they can b...
ADSORPTION OF BENZENE AND PYRIDINE VAPORS BY VARIOUS CARBON ADSORBENTS
ADSORPTION OF BENZENE AND PYRIDINE VAPORS BY VARIOUS CARBON ADSORBENTS
For the first time with the help of express-method we compare adsorption of benzene and pyridine vapors by carbon adsorbents (CA) that differ in raw materials, methods of productio...

Back to Top