Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Effect of cyclic wetting-drying on tensile mechanical behavior and microstructure of clay-bearing sandstone

View through CrossRef
Abstract The understanding of the weakening mechanism of tensile strength of rock subjected to cyclic wetting-drying is critical for rock engineering. Tensile strength tests were conducted on a total of 35 sandstone specimens with different wetting-drying cycles. The crack propagation process and acoustic emission characteristics were obtained through a high-speed camera and acoustic emission system. The results indicate that the tensile strength is observably reduced after cyclic wetting-drying, and the extent of the reduction is not only related to the number of wetting-drying cycle, but also closely related to the clay mineral content of the sample. In addition, as the cycles of wetting-drying increase, the effect of each single cycle on tensile strength is getting smaller and smaller until becoming constant. Moreover, the crack initiation and penetration time is prolonged as the number of wetting-dry cycle increases, which indicates that cyclic wetting-drying weakens the rock stiffness and enhances the ductility of sandstone. Meanwhile, the acoustic emission characteristics during the experiment further confirmed this phenomenon. Furthermore, through the analysis of the microstructure and mineral composition of the samples with different wetting-drying cycles, it is concluded that the main weakening mechanisms of sandstones containing clay minerals are frictional reduction, chemical and corrosive deterioration.
Springer Science and Business Media LLC
Title: Effect of cyclic wetting-drying on tensile mechanical behavior and microstructure of clay-bearing sandstone
Description:
Abstract The understanding of the weakening mechanism of tensile strength of rock subjected to cyclic wetting-drying is critical for rock engineering.
Tensile strength tests were conducted on a total of 35 sandstone specimens with different wetting-drying cycles.
The crack propagation process and acoustic emission characteristics were obtained through a high-speed camera and acoustic emission system.
The results indicate that the tensile strength is observably reduced after cyclic wetting-drying, and the extent of the reduction is not only related to the number of wetting-drying cycle, but also closely related to the clay mineral content of the sample.
In addition, as the cycles of wetting-drying increase, the effect of each single cycle on tensile strength is getting smaller and smaller until becoming constant.
Moreover, the crack initiation and penetration time is prolonged as the number of wetting-dry cycle increases, which indicates that cyclic wetting-drying weakens the rock stiffness and enhances the ductility of sandstone.
Meanwhile, the acoustic emission characteristics during the experiment further confirmed this phenomenon.
Furthermore, through the analysis of the microstructure and mineral composition of the samples with different wetting-drying cycles, it is concluded that the main weakening mechanisms of sandstones containing clay minerals are frictional reduction, chemical and corrosive deterioration.

Related Results

Effect of cyclic wetting-drying on tensile mechanical behavior and microstructure of clay-bearing sandstone
Effect of cyclic wetting-drying on tensile mechanical behavior and microstructure of clay-bearing sandstone
Abstract The understanding of the weakening mechanism of tensile strength of rock subjected to cyclic wetting-drying is critical for rock engineering. Tensile strength test...
Recent developments in tomato drying techniques: A comprehensive review
Recent developments in tomato drying techniques: A comprehensive review
AbstractTomatoes, a highly perishable agricultural product, are commonly dried to extend their shelf life. They serve as raw materials in various domains, including direct consumpt...
Thermodynamic analysis of stable wetting states and wetting transition of micro/nanoscale structured surface
Thermodynamic analysis of stable wetting states and wetting transition of micro/nanoscale structured surface
Superhydrophobicity of biological surfaces with micro/nanoscale hierarchical roughness has recently been given great attention and widely reported in many experimental studies due ...
Oscillating drying of red oak wood blanks
Oscillating drying of red oak wood blanks
The reasons for the reduction in the price of the lamella made of oak wood have been determined. It is established that during the drying of oak wood at low temperatures there is a...
Association between low drying temperature and ozonation process to control pest and preserve the maize quality
Association between low drying temperature and ozonation process to control pest and preserve the maize quality
Maize is one of the cereals major produced for its nutritional and energy characteristics and that has become one of the most cultivated crop in the world. To maintain high quality...
KARAKTERISTIK PENGERINGAN BIJI PINANG MENGGUNAKAN EXPERIMENTAL DRYER
KARAKTERISTIK PENGERINGAN BIJI PINANG MENGGUNAKAN EXPERIMENTAL DRYER
Abstract Areca nut seeds at harvest generally have a high water content, so to reduce the water content of betel nuts, namely drying or drying the betel nuts, they must be dr...
Modifikasi Model Rak Alat Pengering Tipe Hybrid Pada Pengeringan Ikan Keumamah
Modifikasi Model Rak Alat Pengering Tipe Hybrid Pada Pengeringan Ikan Keumamah
Abstrak. Pengeringan hybrid merupakan pengeringan yang menggunakan dua atau lebih sumber energi untuk proses penguapan air. Teknologi ini merupakan alternatif teknologi untuk penge...

Back to Top