Javascript must be enabled to continue!
MiRNA-Nanofiber, the Next Generation of Bioactive Scaffolds for Bone Regeneration: A Review
View through CrossRef
Scaffold-based bone tissue engineering has been introduced as an alternative treatment option for bone grafting due to limitations in the allograft. Not only physical conditions but also biological conditions such as gene expression significantly impact bone regeneration. Scaffolds in composition with bioactive molecules such as miRNA mimics provide a platform to enhance migration, proliferation, and differentiation of osteoprogenitor cells for bone regeneration. Among scaffolds, fibrous structures showed significant advantages in promoting osteogenic differentiation and bone regeneration via delivering bioactive molecules over the past decade. Here, we reviewed the bone and bone fracture healing considerations for the impact of miRNAs on bone regeneration. We also examined the methods used to improve miRNA mimics uptake by cells, the fabrication of fibrous scaffolds, and the effective delivery of miRNA mimics using fibrous scaffold and their processes for bone development. Finally, we offer our view on the principal challenges of miRNA mimics delivery by nanofibers for bone tissue engineering.
Title: MiRNA-Nanofiber, the Next Generation of Bioactive Scaffolds for Bone Regeneration: A Review
Description:
Scaffold-based bone tissue engineering has been introduced as an alternative treatment option for bone grafting due to limitations in the allograft.
Not only physical conditions but also biological conditions such as gene expression significantly impact bone regeneration.
Scaffolds in composition with bioactive molecules such as miRNA mimics provide a platform to enhance migration, proliferation, and differentiation of osteoprogenitor cells for bone regeneration.
Among scaffolds, fibrous structures showed significant advantages in promoting osteogenic differentiation and bone regeneration via delivering bioactive molecules over the past decade.
Here, we reviewed the bone and bone fracture healing considerations for the impact of miRNAs on bone regeneration.
We also examined the methods used to improve miRNA mimics uptake by cells, the fabrication of fibrous scaffolds, and the effective delivery of miRNA mimics using fibrous scaffold and their processes for bone development.
Finally, we offer our view on the principal challenges of miRNA mimics delivery by nanofibers for bone tissue engineering.
Related Results
Slower Engraftment in Patients with High Expression of miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, miRNA-223 Prior to Autologous Stem Cell Transplantation and at Early Time after Transplantation
Slower Engraftment in Patients with High Expression of miRNA-15a, miRNA-16, miRNA-126, miRNA-146a, miRNA-223 Prior to Autologous Stem Cell Transplantation and at Early Time after Transplantation
Abstract
Introduction
MicroRNAs are a class of small (19-25 nucleotides), endogenous RNA which play a significant role in regulation of gene expressio...
Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
Synthesis and Investigation into Apatite-forming Ability of Hydroxyapatite/Chitosan-based Scaffold
In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may...
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Objectives: Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily that were first discovered by Marshall Urist. There are 14 BMPs identified to da...
Transforming growth factor-beta and microRNA-21, microRNA-29b, microRNA-92, and microRNA-129 in systemic sclerosis patients
Transforming growth factor-beta and microRNA-21, microRNA-29b, microRNA-92, and microRNA-129 in systemic sclerosis patients
Background
Systemic sclerosis is characterized by extracellular matrix overproduction by activated fibroblasts. It was reported that microRNAs (miRNAs) participate in t...
FABRICATION OF PCL-COLLAGEN NANOFIBER USING CHLOROFORM-FORMIC ACID SOLUTION AND ITS APPLICATION AS WOUND DRESSING CANDIDATE
FABRICATION OF PCL-COLLAGEN NANOFIBER USING CHLOROFORM-FORMIC ACID SOLUTION AND ITS APPLICATION AS WOUND DRESSING CANDIDATE
In this study, polycaprolactone-collagen nanofiber was prepared with 10% w/v composition using a mixture of chloroform-formic acid. PCL was dissolved in chloroform while collagen w...
Molecular Characterization in 3D Structure of MicroRNA Expressed in Leprosy
Molecular Characterization in 3D Structure of MicroRNA Expressed in Leprosy
ABSTRACTIntroductionHansen’s disease, or leprosy, is a major public health problem in developing countries, caused by Mycobacterium leprae, and affecting the skin and peripheral ne...
miRNA-146-a, miRNA-21, miRNA-143, miRNA-29-b and miRNA-223 as Potential Biomarkers for Atopic Dermatitis
miRNA-146-a, miRNA-21, miRNA-143, miRNA-29-b and miRNA-223 as Potential Biomarkers for Atopic Dermatitis
Background/Objectives: Recently, epigenetic mechanisms have been recognized as crucial in atopic dermatitis development. The emphasis of this research was on ex-panding existing kn...
Exploring miRNA Sponge Networks of Breast Cancer by Combining miRNA-disease-lncRNA and miRNA-target Networks
Exploring miRNA Sponge Networks of Breast Cancer by Combining miRNA-disease-lncRNA and miRNA-target Networks
Background:
Recently, ample researches show that microRNAs (miRNAs) not only
interact with coding genes but interact with a pool of different RNAs. Those RNAs are called
miRNA spon...

