Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Transmission Lines Impedance Fitting Using Analytical Impedance Equation and Frequency Response Analysis

View through CrossRef
Rational function approximation is commonly used to fit the transmission line impedance over a wide frequency range. Nevertheless, it is computationally costly and challenging to implement in practical applications due to the high number of approximations required to fit the impedance curve for the high-frequency range. Therefore, a novel fitting method of multiconductor transmission line (MTL) based on the analytical impedance equation of a transmission line using the impedance frequency response measurement is presented in this paper. The proposed fitting method is a function of the transmission line length since it is based on the analytical impedance equation of a finite transmission line. Furthermore, the proposed model uses a constant set of equations and calculated parameters to fit the impedance frequency response for a wide range of frequencies. Moreover, the proposed model parameters are calculated using derived resonance equations and the impedance frequency response measurement. In addition, an algorithm is developed to further fit the proposed model to the impedance frequency response measurement of the transmission line. MTL impedance frequency response is measured using a real-time digital simulator (RTDS). To ensure the accuracy of the proposed model, a comparison between the proposed model and vector fitting (VF) is presented.
Title: Transmission Lines Impedance Fitting Using Analytical Impedance Equation and Frequency Response Analysis
Description:
Rational function approximation is commonly used to fit the transmission line impedance over a wide frequency range.
Nevertheless, it is computationally costly and challenging to implement in practical applications due to the high number of approximations required to fit the impedance curve for the high-frequency range.
Therefore, a novel fitting method of multiconductor transmission line (MTL) based on the analytical impedance equation of a transmission line using the impedance frequency response measurement is presented in this paper.
The proposed fitting method is a function of the transmission line length since it is based on the analytical impedance equation of a finite transmission line.
Furthermore, the proposed model uses a constant set of equations and calculated parameters to fit the impedance frequency response for a wide range of frequencies.
Moreover, the proposed model parameters are calculated using derived resonance equations and the impedance frequency response measurement.
In addition, an algorithm is developed to further fit the proposed model to the impedance frequency response measurement of the transmission line.
MTL impedance frequency response is measured using a real-time digital simulator (RTDS).
To ensure the accuracy of the proposed model, a comparison between the proposed model and vector fitting (VF) is presented.

Related Results

EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...
Perturbed solution and analyses for single photon transmission equation in optical fiber
Perturbed solution and analyses for single photon transmission equation in optical fiber
As is well known, quantum optics has developed significantly in recent years and advanced several hot research topics, such as quantum communications, quantum sensing, quantum calc...
Impedance -based Stability Analysis on IBR Integrated Power System
Impedance -based Stability Analysis on IBR Integrated Power System
<p dir="ltr">This thesis examines the small-signal stability of inverter-based resources (IBRs) in a power system that contains grid-forming inverters (GFMs) using impedance-...
Effects of Some Simpilfying Assumptions On Interpretation of Transient Data
Effects of Some Simpilfying Assumptions On Interpretation of Transient Data
Abstract The fluid flows in porous medium is described by the diffusion type of partial differential equation. In deriving the flow equation for the constant comp...
Solder joint degradation and detection using RF impedance analysis
Solder joint degradation and detection using RF impedance analysis
PurposeThe purpose of this paper is to clarify the method of using RF impedance changes as an early indicator of degradation of solder joint. It proposes the mode of crack propagat...
The waveform comparison of three common-used fractional viscous acoustic wave equations
The waveform comparison of three common-used fractional viscous acoustic wave equations
Abstract The forward simulation of the viscous acoustic wave equation is an essential part of geophysics and energy resources exploration research. The viscous acoustic sei...
Long-range superharmonic Josephson current and spin-triplet pairing correlations in a junction with ferromagnetic bilayers
Long-range superharmonic Josephson current and spin-triplet pairing correlations in a junction with ferromagnetic bilayers
AbstractThe long-range spin-triplet supercurrent transport is an interesting phenomenon in the superconductor/ferromagnet ("Equation missing") heterostructure containing noncolline...
Microwave Ablation with or Without Chemotherapy in Management of Non-Small Cell Lung Cancer: A Systematic Review
Microwave Ablation with or Without Chemotherapy in Management of Non-Small Cell Lung Cancer: A Systematic Review
Abstract Introduction  Microwave ablation (MWA) has emerged as a minimally invasive treatment for patients with inoperable non-small cell lung cancer (NSCLC). However, whether it i...

Back to Top