Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

View through CrossRef
Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location of the sensors is defined by law, additional ventilation equipment used in places of lower intensity of ventilation and places where methane is concentrated.
Title: Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines
Description:
Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions.
History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters.
The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits.
Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings.
Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales.
Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible.
Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard.
Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures.
Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings.
The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location of the sensors is defined by law, additional ventilation equipment used in places of lower intensity of ventilation and places where methane is concentrated.

Related Results

Study on Characteristics and Model Prediction of Methane Emissions in Coal Mines: A Case Study of Shanxi Province, China
Study on Characteristics and Model Prediction of Methane Emissions in Coal Mines: A Case Study of Shanxi Province, China
The venting of methane from coal mining is China’s main source of methane emissions. Accurate and up-to-date methane emission factors for coal mines are significant for reporting a...
Coal
Coal
AbstractCoal is an organic, combustible, rock‐like natural substance that occurs in various forms from hard and brittle anthracite to soft and friable lignite. Coal is sometimes cl...
Methane Emission Estimation Tools as a Basis for Sustainable Underground Mining of Gas-Bearing Coal Seams
Methane Emission Estimation Tools as a Basis for Sustainable Underground Mining of Gas-Bearing Coal Seams
Underground coal mining of gas-bearing coal seams is accompanied by the emission of large amounts of methane, which increases with depth. Coal seam methane is not only a major caus...
Measurement and modeling of temperature evolution during methane desorption in coal
Measurement and modeling of temperature evolution during methane desorption in coal
AbstractThe decrease of coal temperature has been confirmed by many tests during methane desorption in coal, including coal and gas outburst, but the thermal-dynamic process for me...
Nanoscale pore structure in anthracite coals and its effect on methane adsorption capacity
Nanoscale pore structure in anthracite coals and its effect on methane adsorption capacity
Although significant amounts of methane are present in anthracite coal seams, coalbed methane resources cannot be extracted effectively and quickly. This study mainly focused on in...
Adaption of Theoretical Adsorption Model on Coal: Physical Structure
Adaption of Theoretical Adsorption Model on Coal: Physical Structure
With the motivation to investigate the role of coal physical structure on the adsorption performance of coal reservoir, 18 different types of coal samples with different coal struc...
On determining coal classification indicators for establishing dangerous properties of mines
On determining coal classification indicators for establishing dangerous properties of mines
Currently, more than 20 qualification indicators are known by which degree of metamorphic coal transformations are established. Most of these indicators are designed for determinin...
Characteristics of overburden fracture spatial distribution in abandoned mines goaf group
Characteristics of overburden fracture spatial distribution in abandoned mines goaf group
Developing and utilizing the remaining methane resources in abandoned mines could reduce resource waste, protect the environment, and promote the sustainable development of the coa...

Back to Top