Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

MHD biconvective flow of Powell Eyring nanofluid over stretched surface

View through CrossRef
The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.
Title: MHD biconvective flow of Powell Eyring nanofluid over stretched surface
Description:
The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids.
Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters.
Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field.
Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM).
Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations.
To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed.
Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables.
Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number.
Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field.
Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.

Related Results

Magnetosphere simulations with ideal MHD, Hall MHD and the MHD with Adaptively Embedded Particle-in-Cell (MHD-AEPIC) models
Magnetosphere simulations with ideal MHD, Hall MHD and the MHD with Adaptively Embedded Particle-in-Cell (MHD-AEPIC) models
<p>The Magnetohydrodynamic with Embedded Particle-In-Cell (MHD-EPIC) model has been developed and applied successfully to Earth, Mercury, Mars and Ganymede magnetosph...
Thermal Performance of Nanofluid in Automobile Radiator
Thermal Performance of Nanofluid in Automobile Radiator
The use of nanofluids as a coolant in automobile radiators is getting more attention for the radiator’s better performance. Continuous development in automotive industries has incr...
Study on Enhanced Oil Recovery of Water-Based Nanofluid with Functional Silica Nanoparticles
Study on Enhanced Oil Recovery of Water-Based Nanofluid with Functional Silica Nanoparticles
Abstract Although application of nanofluids in enhanced oil recovery has been reported, the dispersibility of nanoparticles in water is one of the most difficult pro...
Performance Evaluation of Photovoltaic Thermal using MgO Nanofluid
Performance Evaluation of Photovoltaic Thermal using MgO Nanofluid
This study investigated the performance and efficiency of a photovoltaic thermal (PV/T) system utilizing a metal-based nanofluid, specifically MgO nanofluid. This research proposes...
Recent Review On Preparation Method, Mixing Ratio, and Heat Transfer Application Using Hybrid Nanofluid
Recent Review On Preparation Method, Mixing Ratio, and Heat Transfer Application Using Hybrid Nanofluid
Hybrid nanofluid is the extension from nanofluid that had been recently discovered, which can enhance heat transfer performance of heat transfer application. However, there were li...
MHD control in burning plasmas
MHD control in burning plasmas
Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokama...
Modified Hongyu Decoction promotes wound healing by activating the VEGF/PI3K/Akt signaling pathway
Modified Hongyu Decoction promotes wound healing by activating the VEGF/PI3K/Akt signaling pathway
Wound healing is a considerable problem for clinicians. Ever greater attention has been paid to the role of Chinese herbal monomers and compounds on wound healing. This study aims ...
Multiphase Flow Metering:An Evaluation of Discharge Coefficients
Multiphase Flow Metering:An Evaluation of Discharge Coefficients
Abstract The orifice discharge coefficient (CD) is the constant required to correct theoretical flow rate to actual flow rate. It is known that single phase orifi...

Back to Top