Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells

View through CrossRef
Abstract Background: Autophagy is considered to be another restorative focus for the treatment of brain tumors. Although several research have demonstrated that melatonin induces autophagy in colon cancer and hepatoma cells, there has not been any direct evidence of whether melatonin is capable of inducing autophagy in human glioma cells. Results: In the present research, we report that melatonin or its agonist, agomelatine, induced autophagy in A172 and U87-MG glioblastoma cells for a concentration-and time-dependent way, which was significantly attenuated by treatment with luzindole, a melatonin receptor antagonist. Furthermore, by suppressing autophagy at the late-stage with bafilomycin A1 and early stage with 3-MA, we found that the melatonin-induced autophagy was activated early, and the autophagic flux was complete. Melatonin treatment alone did not induce any apoptotic changes in the glioblastoma cells, as measured by flow cytometry. Western blot studies confirmed that melatonin alone prominently upregulated the levels of Beclin 1 and LC3 II, which was accompanied by an increase in the expression of Bcl-2, whereas it had no effect on the expression of Bax in the glioblastoma cells. Remarkably, co-treatment with 3-MA and melatonin significantly enhanced the apoptotic cell population in the glioblastoma cells, along with a prominent decrease in the expression of bcl-2 and increase in the Bax expression levels, which collectively indicated that the disruption of autophagy triggers the melatonin-induced apoptosis in glioblastoma cells. Conclusions: These results provide information indicating that melatonin may act as a common upstream signal between autophagy and apoptosis, which may lead to the development of new therapeutic strategies for glioma.
Springer Science and Business Media LLC
Title: Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells
Description:
Abstract Background: Autophagy is considered to be another restorative focus for the treatment of brain tumors.
Although several research have demonstrated that melatonin induces autophagy in colon cancer and hepatoma cells, there has not been any direct evidence of whether melatonin is capable of inducing autophagy in human glioma cells.
Results: In the present research, we report that melatonin or its agonist, agomelatine, induced autophagy in A172 and U87-MG glioblastoma cells for a concentration-and time-dependent way, which was significantly attenuated by treatment with luzindole, a melatonin receptor antagonist.
Furthermore, by suppressing autophagy at the late-stage with bafilomycin A1 and early stage with 3-MA, we found that the melatonin-induced autophagy was activated early, and the autophagic flux was complete.
Melatonin treatment alone did not induce any apoptotic changes in the glioblastoma cells, as measured by flow cytometry.
Western blot studies confirmed that melatonin alone prominently upregulated the levels of Beclin 1 and LC3 II, which was accompanied by an increase in the expression of Bcl-2, whereas it had no effect on the expression of Bax in the glioblastoma cells.
Remarkably, co-treatment with 3-MA and melatonin significantly enhanced the apoptotic cell population in the glioblastoma cells, along with a prominent decrease in the expression of bcl-2 and increase in the Bax expression levels, which collectively indicated that the disruption of autophagy triggers the melatonin-induced apoptosis in glioblastoma cells.
Conclusions: These results provide information indicating that melatonin may act as a common upstream signal between autophagy and apoptosis, which may lead to the development of new therapeutic strategies for glioma.

Related Results

Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells
Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells
Abstract Background: Autophagy is considered to be another restorative focus for the treatment of brain tumors. Although several research have demonstrated that melatonin i...
Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells
Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells
Abstract Background: Autophagy is considered to beanother restorative focus for the treatment of brain tumors. Although several research have demonstrated that melatonin in...
Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells
Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells
Abstract Background: Autophagy is considered to beanother restorative focus for the treatment of brain tumors. Although several research have demonstrated that melatonin in...
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract Considering that a tumor promoting role for GSK3 has been suggested in pancreatic cancer (PC) cells and that GSK3 inhibitors are currently under clinical tr...
Melatonin and mammary cancer: a short review.
Melatonin and mammary cancer: a short review.
Melatonin is an indolic hormone produced mainly by the pineal gland. The former hypothesis of its possible role in mammary cancer development was based on the evidence that melaton...
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
<div>Abstract<p>Autophagy is a mechanism by which cells degrade cellular material to provide nutrients and energy for survival during stress. The autophagy is thought t...
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
<div>Abstract<p>Autophagy is a mechanism by which cells degrade cellular material to provide nutrients and energy for survival during stress. The autophagy is thought t...

Back to Top