Javascript must be enabled to continue!
Platinum-Group Element Geochemistry of Igneous Rocks in the Chongjiang Cu–Mo–Au Deposit, Southern Tibet: Implications for the Formation of Post-Collisional Porphyry Cu Deposits
View through CrossRef
Abstract
The timing and extent of sulfide saturation have been suggested as controlling factors in the formation of economically significant porphyry Cu deposits in subduction zone settings. However, details on the sulfide saturation history in post-collisional porphyry systems remain ambiguous. Accordingly, we have characterized the whole-rock geochemistry, including platinum-group elements (PGE), of igneous intrusions in the post-collisional Chongjiang porphyry Cu–Mo–Au deposit (southern Tibet) and utilize this data in conjunction with zircon U–Pb geochronological results and sulfide chemistry to assess the timing of sulfide saturation, the nature and amount of magmatic sulfide produced. The Chongjiang intrusions (monzogranite, biotite monzogranite porphyry, granodiorite, dacite porphyry, and quartz diorite porphyry) and mafic microgranular enclaves (MMEs) have zircon U–Pb ages of 14.2 to 12.8 Ma. Covariations in whole-rock major and trace elements among the Chongjiang intrusions and MMEs, together with similarities in their Sr–Nd and zircon Hf isotope compositions, indicate that they are co-magmatic and crystallized from a juvenile lower crustal melt that mixed with mafic melt derived from the lithospheric mantle; this hybrid melt subsequently evolved via fractional crystallization. Trace-element ratios in zircon and temperature − ∆FMQ estimates of the different intrusions suggest that they all crystallized from oxidized (average ∆FMQ = 1.9–2.6) and water-rich magmas. Palladium contents and Pd/Pt ratios in the Chongjiang igneous intrusions increase with decreasing MgO up to 3.9 wt % MgO, after which they abruptly decrease. The initial increase in Pd/Pt ratios likely results from the fractionation of a Pt-rich mineral (e.g. Pt–Fe alloy). The decrease in Pd contents and Pd/Pt ratios at 3.9 wt % MgO likely results from sulfide saturation during magma evolution, but prior to volatile exsolution, which occurred at approximately 1.4 to 2.4 wt % MgO. The presence of magmatic sulfide inclusions in amphibole and magnetite in samples with 3.9 wt % MgO, and the geochemical compositions of sulfide inclusions suggest that they represented trapped sulfide liquid and intermediate solid solution. Results of Monte Carlo simulations demonstrate that 0.003 to 0.009 wt % magmatic sulfide is required to have fractionated from the magma to explain the decrease in Pd contents at 3.9 wt % MgO. Highly chalcophile elements, such as Pd, will be sequestered by the magmatic sulfide that saturates at depth, decreasing their concentrations in the residual silicate melt, whereas concentrations of the less chalcophile elements, such as Cu, Mo, and even Au, will not be as significantly affected. Consequently, sufficient concentrations of Cu–Mo–Au will remain in the residual melt and, upon reaching volatile saturation, can be transported by the vapor phase to form porphyry Cu–Mo–Au deposits. In the case of the Chongjiang deposit, sulfide saturation was likely triggered by the high pressures and/or depletion of FeO caused by the thick (~70 km) crust beneath the Gangdese belt. This contribution presents evidence of sulfide saturation in post-collisional magmatic systems, and demonstrates that the amount of magmatic sulfide produced is a critical factor in controlling the formation of post-collisional porphyry Cu deposits.
Oxford University Press (OUP)
Title: Platinum-Group Element Geochemistry of Igneous Rocks in the Chongjiang Cu–Mo–Au Deposit, Southern Tibet: Implications for the Formation of Post-Collisional Porphyry Cu Deposits
Description:
Abstract
The timing and extent of sulfide saturation have been suggested as controlling factors in the formation of economically significant porphyry Cu deposits in subduction zone settings.
However, details on the sulfide saturation history in post-collisional porphyry systems remain ambiguous.
Accordingly, we have characterized the whole-rock geochemistry, including platinum-group elements (PGE), of igneous intrusions in the post-collisional Chongjiang porphyry Cu–Mo–Au deposit (southern Tibet) and utilize this data in conjunction with zircon U–Pb geochronological results and sulfide chemistry to assess the timing of sulfide saturation, the nature and amount of magmatic sulfide produced.
The Chongjiang intrusions (monzogranite, biotite monzogranite porphyry, granodiorite, dacite porphyry, and quartz diorite porphyry) and mafic microgranular enclaves (MMEs) have zircon U–Pb ages of 14.
2 to 12.
8 Ma.
Covariations in whole-rock major and trace elements among the Chongjiang intrusions and MMEs, together with similarities in their Sr–Nd and zircon Hf isotope compositions, indicate that they are co-magmatic and crystallized from a juvenile lower crustal melt that mixed with mafic melt derived from the lithospheric mantle; this hybrid melt subsequently evolved via fractional crystallization.
Trace-element ratios in zircon and temperature − ∆FMQ estimates of the different intrusions suggest that they all crystallized from oxidized (average ∆FMQ = 1.
9–2.
6) and water-rich magmas.
Palladium contents and Pd/Pt ratios in the Chongjiang igneous intrusions increase with decreasing MgO up to 3.
9 wt % MgO, after which they abruptly decrease.
The initial increase in Pd/Pt ratios likely results from the fractionation of a Pt-rich mineral (e.
g.
Pt–Fe alloy).
The decrease in Pd contents and Pd/Pt ratios at 3.
9 wt % MgO likely results from sulfide saturation during magma evolution, but prior to volatile exsolution, which occurred at approximately 1.
4 to 2.
4 wt % MgO.
The presence of magmatic sulfide inclusions in amphibole and magnetite in samples with 3.
9 wt % MgO, and the geochemical compositions of sulfide inclusions suggest that they represented trapped sulfide liquid and intermediate solid solution.
Results of Monte Carlo simulations demonstrate that 0.
003 to 0.
009 wt % magmatic sulfide is required to have fractionated from the magma to explain the decrease in Pd contents at 3.
9 wt % MgO.
Highly chalcophile elements, such as Pd, will be sequestered by the magmatic sulfide that saturates at depth, decreasing their concentrations in the residual silicate melt, whereas concentrations of the less chalcophile elements, such as Cu, Mo, and even Au, will not be as significantly affected.
Consequently, sufficient concentrations of Cu–Mo–Au will remain in the residual melt and, upon reaching volatile saturation, can be transported by the vapor phase to form porphyry Cu–Mo–Au deposits.
In the case of the Chongjiang deposit, sulfide saturation was likely triggered by the high pressures and/or depletion of FeO caused by the thick (~70 km) crust beneath the Gangdese belt.
This contribution presents evidence of sulfide saturation in post-collisional magmatic systems, and demonstrates that the amount of magmatic sulfide produced is a critical factor in controlling the formation of post-collisional porphyry Cu deposits.
Related Results
Insights Into the Magma Source and Evolution of the Taca Taca Bajo Porphyry Deposit: Implications for the Metallogeny and Cu Fertility of the Central Andean Retro Arc
Insights Into the Magma Source and Evolution of the Taca Taca Bajo Porphyry Deposit: Implications for the Metallogeny and Cu Fertility of the Central Andean Retro Arc
Abstract
The magmatic processes that lead to porphyry Cu ore formation in continental retro-arc environments are not well understood. As a result, the uncertainty of...
Evolution of magmatic-hydrothermal system of the Kalaxiange’er porphyry copper belt and implications for ore formation (Xinjiang, China)
Evolution of magmatic-hydrothermal system of the Kalaxiange’er porphyry copper belt and implications for ore formation (Xinjiang, China)
Abstract
The Kalaxiange’er porphyry copper ore belt is situated in the eastern part of the southern Altai of the Central Asian Orogenic Belt and forms part of a broa...
Mineral markers of porphyry processes: regional and local signatures of porphyry prospectivity
Mineral markers of porphyry processes: regional and local signatures of porphyry prospectivity
Porphyry-style mineralisation occurs chiefly as a consequence of the release of large volumes of metal-bearing aqueous brine during the cooling and crystallization of plutonic and ...
Chapter 6 Skarn Deposits of China
Chapter 6 Skarn Deposits of China
Abstract
Skarn deposits are one of the most common deposit types in China. The 386 skarns summarized in this review contain ~8.9 million tonnes (Mt) Sn (87% of China...
A Preliminary Review of the Metallogenic Regularity of Nickel Deposits in China
A Preliminary Review of the Metallogenic Regularity of Nickel Deposits in China
AbstractThe nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large‐scale deposits, 14 large‐sc...
Distribution Characteristics and Metallogenic Regularity of Graphite Deposits in Qinling Orogen, China
Distribution Characteristics and Metallogenic Regularity of Graphite Deposits in Qinling Orogen, China
AbstractQinling orogen is one of the five main repository distribution provinces of large scale graphite resources. Graphite occurrence strata are multitudinous including NeoArchae...
Zircon U‐Pb Geochronology and Geochemical Characteristics of the Volcanic Host Rocks from the Tongyu VHMS Copper Deposit in the Western North Qinling Orogen and Their Geological Significance
Zircon U‐Pb Geochronology and Geochemical Characteristics of the Volcanic Host Rocks from the Tongyu VHMS Copper Deposit in the Western North Qinling Orogen and Their Geological Significance
AbstractPrecise in situ zircon U‐Pb dating and Lu–Hf isotopic measurement using an LA‐ICP‐MS system, whole‐rock major and trace element geochemistry and Sr–Nd isotope geochemistry ...
Rare Earth Deposits of North America
Rare Earth Deposits of North America
AbstractRare earth elements (REE) have been mined in North America since 1885, when placer monazite was produced in the southeast USA. Since the 1960s, however, most North American...


