Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Research on the Electrical and Mechanical Properties of Conductive Epoxy Composite

View through CrossRef
T his paper reported on the possibility of using organic materials in the production of green epoxy conductive composites. Epoxy composite samples were produced through the hybridization of carbonized coconut fibre filler (CCS), raffia palm fibre (RPF), carbon black (CB), and carbon fibre (CF), using the simple hand lay-up technique. Then the electrical properties (electrical resistivity and electrical conductivity) and the mechanical properties (tensile strength) of the composite samples were tested accordingly, using the ASTM D6343 – 14, ASTM B193 and ASTM D 3039 approved methods. Results obtained from the laboratory tests revealed that both the CCS and RPF (organic materials) have significant influence on the mechanical and electrical properties of the composite samples. It was observed that the electrical conductivity of the composite samples increased (4.34x10-3 S/cm to 4.48x10-3 S/cm) as the CCS loading increased from 3% to 6% (by mass); before it started to decline after 9% (by mass) CCS loading, recording lowest conductivity of 9x10-4 S/cm at 15% CCS volume. The electrical resistivity of the composite samples was noted to decline from 2.90x107 Ωcm to 2.83x107 Ωcm as the CCS content in the composite increased from 3% to 6%, before it started to increase after 9% CCS quantity, with the S5 composite sample (15% CCS quantity) having the highest electrical resistivity of 3.80x107 Ωcm. Regarding the composite’s mechanical properties, the study depicted that the S1 composite sample had the highest tensile strength of 98.3 MPa, while the S5 composite developed the lowest tensile strength of 62.7 MPa, portraying that the CCS and RAF has a substantial effect on the composites samples’ tensile strength. This study’s results portrayed the possibility of producing lightweight, high-tensile strength conductive composite from organic waste materials, which can be utilized in several engineering applications.
Title: Research on the Electrical and Mechanical Properties of Conductive Epoxy Composite
Description:
T his paper reported on the possibility of using organic materials in the production of green epoxy conductive composites.
Epoxy composite samples were produced through the hybridization of carbonized coconut fibre filler (CCS), raffia palm fibre (RPF), carbon black (CB), and carbon fibre (CF), using the simple hand lay-up technique.
Then the electrical properties (electrical resistivity and electrical conductivity) and the mechanical properties (tensile strength) of the composite samples were tested accordingly, using the ASTM D6343 – 14, ASTM B193 and ASTM D 3039 approved methods.
Results obtained from the laboratory tests revealed that both the CCS and RPF (organic materials) have significant influence on the mechanical and electrical properties of the composite samples.
It was observed that the electrical conductivity of the composite samples increased (4.
34x10-3 S/cm to 4.
48x10-3 S/cm) as the CCS loading increased from 3% to 6% (by mass); before it started to decline after 9% (by mass) CCS loading, recording lowest conductivity of 9x10-4 S/cm at 15% CCS volume.
The electrical resistivity of the composite samples was noted to decline from 2.
90x107 Ωcm to 2.
83x107 Ωcm as the CCS content in the composite increased from 3% to 6%, before it started to increase after 9% CCS quantity, with the S5 composite sample (15% CCS quantity) having the highest electrical resistivity of 3.
80x107 Ωcm.
Regarding the composite’s mechanical properties, the study depicted that the S1 composite sample had the highest tensile strength of 98.
3 MPa, while the S5 composite developed the lowest tensile strength of 62.
7 MPa, portraying that the CCS and RAF has a substantial effect on the composites samples’ tensile strength.
This study’s results portrayed the possibility of producing lightweight, high-tensile strength conductive composite from organic waste materials, which can be utilized in several engineering applications.

Related Results

Hybrid syntactic foam core cased natural-glass fibre sandwich composite
Hybrid syntactic foam core cased natural-glass fibre sandwich composite
Composite materials comprised of two separates with different properties to form a single material that reflect the properties of the combined materials. Syntactic foam composites ...
Effect of Silicone Rubber on the Properties of Epoxy/Recovered Carbon Black (rCB) Conductive Materials
Effect of Silicone Rubber on the Properties of Epoxy/Recovered Carbon Black (rCB) Conductive Materials
  The primary focus of this study is to investigate the effect of silicone rubber (SR) content on the mechanical, thermal, electrical conductivity, and morphological properties of...
Practical Technology of Toughening Epoxy Resin (II): Modification Effects of Special Engineering Plastics on Epoxy Resin
Practical Technology of Toughening Epoxy Resin (II): Modification Effects of Special Engineering Plastics on Epoxy Resin
The effects of Special engineering plastics (SEP) such as polyether ether ketone (PEEK), polyimide (PI), thermoplastic polyimide (TPI), polyphenylene sulfide (PPS), polysulfone (PS...
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...
Fabrication of Conductive, High Strength and Electromagnetic Interference (EMI) Shielded Green Composites Based on Waste Materials
Fabrication of Conductive, High Strength and Electromagnetic Interference (EMI) Shielded Green Composites Based on Waste Materials
Conventional conductive homopolymers such as polypyrrole and poly-3,4-ethylenedioxythiophene (PEDOT) have poor mechanical properties, for the solution to this problem, we tried to ...
Interfacial Adhesion in Fibre-Polymer Composites
Interfacial Adhesion in Fibre-Polymer Composites
<p>The mechanical performance of a fibre-polymer composite is largely determined by the strength of interfacial adhesion across the fibre-polymer phase boundary. Therefore, a...
Effects of Coating Aggregates on Dynamic Properties of Concrete by Impact Resonance Method
Effects of Coating Aggregates on Dynamic Properties of Concrete by Impact Resonance Method
Concrete structures may be subjected to dynamic loadings like earthquakes, impact, and vehicular loads. These loads may cause considerable damage to infrastructures and shorten the...

Back to Top