Javascript must be enabled to continue!
Rhodobacter sphaeroides diphosphoryl lipid A inhibits interleukin-6 production in CD14-negative murine marrow stromal ST2 cells stimulated with lipopolysaccharide or paclitaxel (taxol)
View through CrossRef
Paclitaxel (taxol), a microtubule stabilizer with anticancer activity, mimics the actions of lipopolysaccharide (LPS) on murine macrophages in vitro. Recent studies have shown that the Rhodobacter sphaeroides diphosphoryl lipid A (RsDPLA) inhibits both LPS- and paclitaxel-induced activation of murine macrophages, and have suggested that LPS, RsDPLA, and paclitaxel share the same receptor site on murine macrophages. To analyze this receptor site, the present study focused on the interactions between LPS, RsDPLA and paclitaxel in the activation of ST2 cells derived from murine bone marrow stroma. The ST2 cells did not express CD14 mRNA. The cells produced IL-6 molecules and expressed IL-6 mRNA in response to LPS, but did not produce TNF and nitric oxide. Paclitaxel induced IL-6 mRNA expression in ST2 cells. RsDPLA inhibited both LPS- and paclitaxel-induced IL-6 mRNA expression in a dose-dependent manner. These results suggest that LPS, RsDPLA, and paclitaxel are recognized by the same receptor complex on ST2 cells, and that the receptor functions without membrane CD14.
SAGE Publications
Title: Rhodobacter sphaeroides diphosphoryl lipid A inhibits interleukin-6 production in CD14-negative murine marrow stromal ST2 cells stimulated with lipopolysaccharide or paclitaxel (taxol)
Description:
Paclitaxel (taxol), a microtubule stabilizer with anticancer activity, mimics the actions of lipopolysaccharide (LPS) on murine macrophages in vitro.
Recent studies have shown that the Rhodobacter sphaeroides diphosphoryl lipid A (RsDPLA) inhibits both LPS- and paclitaxel-induced activation of murine macrophages, and have suggested that LPS, RsDPLA, and paclitaxel share the same receptor site on murine macrophages.
To analyze this receptor site, the present study focused on the interactions between LPS, RsDPLA and paclitaxel in the activation of ST2 cells derived from murine bone marrow stroma.
The ST2 cells did not express CD14 mRNA.
The cells produced IL-6 molecules and expressed IL-6 mRNA in response to LPS, but did not produce TNF and nitric oxide.
Paclitaxel induced IL-6 mRNA expression in ST2 cells.
RsDPLA inhibited both LPS- and paclitaxel-induced IL-6 mRNA expression in a dose-dependent manner.
These results suggest that LPS, RsDPLA, and paclitaxel are recognized by the same receptor complex on ST2 cells, and that the receptor functions without membrane CD14.
Related Results
CD14 is not involved in Rhodobacter sphaeroides diphosphoryl lipid A inhibition of tumor necrosis factor alpha and nitric oxide induction by taxol in murine macrophages
CD14 is not involved in Rhodobacter sphaeroides diphosphoryl lipid A inhibition of tumor necrosis factor alpha and nitric oxide induction by taxol in murine macrophages
Taxol, a microtubule stabilizer with anticancer activity, mimics the actions of lipopolysaccharide (LPS) on murine macrophages in vitro. Recently, it was shown that taxol-induced m...
p62 Signaling Is Increased in Multiple Myeloma Microenvironment.
p62 Signaling Is Increased in Multiple Myeloma Microenvironment.
Abstract
The bone microenvironment plays a critical role in promoting both tumor growth and bone destruction in myeloma (MM). Marrow stromal cells produce factors, w...
LPS-dependent changes in the expression of 57 kDa and 53 kDa cell membrane proteins without participation of CD14
LPS-dependent changes in the expression of 57 kDa and 53 kDa cell membrane proteins without participation of CD14
It is widely presumed that in addition to CD14, other molecules are necessary for lipopolysaccharide (LPS)-induced cell activation. In order to shed light on some of the biological...
Abstract 1071: Efficacy of targeted osmotic lysis using pulsed electric field stimulation compared to paclitaxel for treating murine, triple-negative breast carcinoma
Abstract 1071: Efficacy of targeted osmotic lysis using pulsed electric field stimulation compared to paclitaxel for treating murine, triple-negative breast carcinoma
Abstract
Targeted osmotic lysis (TOL), the concurrent stimulation of voltage-gated sodium channels (VGSCs) and blockade of Na+ pumps, kills up to 100% of highly mali...
Abstract 1809: Reversal of Taxol resistance in ovarian cancer cell lines by IGF pathway inhibition
Abstract 1809: Reversal of Taxol resistance in ovarian cancer cell lines by IGF pathway inhibition
Abstract
Our group recently reported increased insulin-like growth factor 2 (IGF2) expression and AKT activation in ovarian cancer cells following treatment with the...
Megakaryocytes Support Viability Proliferation and Protection of Primary Pre-B ALL Cells from Chemotherapy
Megakaryocytes Support Viability Proliferation and Protection of Primary Pre-B ALL Cells from Chemotherapy
Abstract
BACKGROUND: The bone marrow is known to shelter leukemia cells from chemotherapy and contributes to the survival of chemotherapy resistant residual cells, t...
Predictors of False-Negative Axillary FNA Among Breast Cancer Patients: A Cross-Sectional Study
Predictors of False-Negative Axillary FNA Among Breast Cancer Patients: A Cross-Sectional Study
Abstract
Introduction
Fine-needle aspiration (FNA) is commonly used to investigate lymphadenopathy of suspected metastatic origin. The current study aims to find the association be...
Abstract A186: Low dose paclitaxel treatment increase the stability of p27Kip1
Abstract A186: Low dose paclitaxel treatment increase the stability of p27Kip1
Abstract
The purpose of our study is to better understand how taxanes (paclitaxel, docetaxel) induce cell death. Taxanes play a critical role in combination chemothe...


