Javascript must be enabled to continue!
Ventilation Control of Indoor Transmission of Airborne Diseases in an Urban Community
View through CrossRef
Following the recent severe acute respiratory syndrome epidemics and worldwide concern about the next pandemic, whether influenza or multiple drug resistant tuberculosis, has underlined the importance of effective interventions into airborne disease transmission in indoor environments in a community. The engineering control measures available include ventilation dilution, use of high-efficiency particulate air filters in a room or in the heating, ventilation, and air-conditioning (HVAC) system, and use of ultraviolet germicidal irradiation devices in ceiling area of a room or in the HVAC system. These methods are known to be effective in controlling or delaying airborne disease transmission in a single enclosure in both healthcare facilities and the community. However, there have been no studies of their relative effectiveness at the community level. This paper presents mathematical modeling of some engineering control strategies with a focus on ventilation and corresponding analysis of their relative effectiveness compared with other public health interventions in disease control in indoor environments at the community level. The results should help us to determine the most effective intervention strategies. We conclude that the engineering intervention methods such as building ventilation can be as effective as public health interventions and the ventilation rates specified in the existing standards such as ASHRAE 62 may be too low for the purpose of preventing or controlling airborne infectious diseases in indoor environments.
Title: Ventilation Control of Indoor Transmission of Airborne Diseases in an Urban Community
Description:
Following the recent severe acute respiratory syndrome epidemics and worldwide concern about the next pandemic, whether influenza or multiple drug resistant tuberculosis, has underlined the importance of effective interventions into airborne disease transmission in indoor environments in a community.
The engineering control measures available include ventilation dilution, use of high-efficiency particulate air filters in a room or in the heating, ventilation, and air-conditioning (HVAC) system, and use of ultraviolet germicidal irradiation devices in ceiling area of a room or in the HVAC system.
These methods are known to be effective in controlling or delaying airborne disease transmission in a single enclosure in both healthcare facilities and the community.
However, there have been no studies of their relative effectiveness at the community level.
This paper presents mathematical modeling of some engineering control strategies with a focus on ventilation and corresponding analysis of their relative effectiveness compared with other public health interventions in disease control in indoor environments at the community level.
The results should help us to determine the most effective intervention strategies.
We conclude that the engineering intervention methods such as building ventilation can be as effective as public health interventions and the ventilation rates specified in the existing standards such as ASHRAE 62 may be too low for the purpose of preventing or controlling airborne infectious diseases in indoor environments.
Related Results
Particle Based Model for Airborne Disease Transmission
Particle Based Model for Airborne Disease Transmission
Executive SummaryPrior literature documents cases of airborne infectious disease transmission at distances ranging from ≥ 2 m to inter-continental in scale. Physics- and biology- b...
Scoping indoor airborne fungi in an excellent indoor air quality office building in Hong Kong
Scoping indoor airborne fungi in an excellent indoor air quality office building in Hong Kong
This study aims to investigate the differences in indoor airborne fungal exposure between a selective subset of air-conditioned offices within a building classified with excellent ...
CFD Analysis of Indoor Ventilation for Airborne Virus Infection
CFD Analysis of Indoor Ventilation for Airborne Virus Infection
CFD Analysis of Indoor Ventilation for Airborne Virus Infection Indoor airflow patterns and air residence times significantly influence the spread of airborne infectious viruses, s...
Navigating dust storms and urban living: an analysis of particulate matter infiltration in Dubai’s residences
Navigating dust storms and urban living: an analysis of particulate matter infiltration in Dubai’s residences
In response to the growing concern of air pollution in Dubai, this study was undertaken to measure and analyze indoor and outdoor particulate matter (PM) concentrations in resident...
Ventilation in university classrooms during the COVID-19 pandemic
Ventilation in university classrooms during the COVID-19 pandemic
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has caused a pandemic, forcing schools and universities to stop in-person classes. For universities to allow ...
Energy efficient ventilation strategies for surgery rooms
Energy efficient ventilation strategies for surgery rooms
Surgery rooms are a space type with particularly stringent indoor environmental quality (IEQ) requirements, which translate into high energy use. Due to the unclear IEQ and infecti...
Unravelling indoor temperature response to summer heat through long-term crowdsourced observations in Dutch residences
Unravelling indoor temperature response to summer heat through long-term crowdsourced observations in Dutch residences
City dwellers are increasingly exposed to summer heat due to climate change and urbanization. Summer heat, which causes heat stress, is intensified especially at night in urban are...
Indoor and outdoor air quality relationships modelling
Indoor and outdoor air quality relationships modelling
Particulate matter (PM) related ambient pollution has emerged as one of the most significant environmental and human health issues during the last decades. Thus, ambient PM concent...

