Javascript must be enabled to continue!
Deformed character recognition using convolutional neural networks
View through CrossRef
Realization of high accuracies towards south Indian character recognition is one the truly interesting research challenge. In this paper, our investigation is focused on recognition of one of the most widely used south Indian script called Kannada. In particular, the proposed exper-iment is subject towards the recognition of degraded character images which are extracted from the ancient Kannada poetry documents and also on the handwritten character images that are collected from various unconstrained environments. The character images in the degraded documents are slightly blurry as a result of which character image is imposed by a kind of broken and messy appearances, this particular aspect leads to various conflicting behaviors of the recognition algorithm which in turn reduces the accuracy of recognition. The training of degraded patterns of character image samples are carried out by using one of the deep convolution neural networks known as Alex net.The performance evaluation of this experimentation is subject towards the handwritten datasets gathered synthetically from users of age groups between 18-21, 22-25 and 26-30 and also printed datasets which are extracted from ancient document images of Kannada poetry/literature. The datasets are comprised of around 497 classes. 428 classes include consonants, vowels, simple compound characters and complex com-pound characters. Each base character combined with consonant/vowel modifiers in handwritten text with overlapping/touching diacritics are assumed as a separate class in Kannada script for our experimentation. However, for those compound characters that are non-overlapping/touching are still considered as individual classes for which the semantic analysis is carried out during the post processing stage of OCR. It is observed that the performance of the Alex net in classification of printed character samples is reported as 91.3% and with reference to handwritten text, and accuracy of 92% is recorded.
Science Publishing Corporation
Title: Deformed character recognition using convolutional neural networks
Description:
Realization of high accuracies towards south Indian character recognition is one the truly interesting research challenge.
In this paper, our investigation is focused on recognition of one of the most widely used south Indian script called Kannada.
In particular, the proposed exper-iment is subject towards the recognition of degraded character images which are extracted from the ancient Kannada poetry documents and also on the handwritten character images that are collected from various unconstrained environments.
The character images in the degraded documents are slightly blurry as a result of which character image is imposed by a kind of broken and messy appearances, this particular aspect leads to various conflicting behaviors of the recognition algorithm which in turn reduces the accuracy of recognition.
The training of degraded patterns of character image samples are carried out by using one of the deep convolution neural networks known as Alex net.
The performance evaluation of this experimentation is subject towards the handwritten datasets gathered synthetically from users of age groups between 18-21, 22-25 and 26-30 and also printed datasets which are extracted from ancient document images of Kannada poetry/literature.
The datasets are comprised of around 497 classes.
428 classes include consonants, vowels, simple compound characters and complex com-pound characters.
Each base character combined with consonant/vowel modifiers in handwritten text with overlapping/touching diacritics are assumed as a separate class in Kannada script for our experimentation.
However, for those compound characters that are non-overlapping/touching are still considered as individual classes for which the semantic analysis is carried out during the post processing stage of OCR.
It is observed that the performance of the Alex net in classification of printed character samples is reported as 91.
3% and with reference to handwritten text, and accuracy of 92% is recorded.
.
Related Results
Fuzzy Chaotic Neural Networks
Fuzzy Chaotic Neural Networks
An understanding of the human brain’s local function has improved in recent years. But the cognition of human brain’s working process as a whole is still obscure. Both fuzzy logic ...
On the role of network dynamics for information processing in artificial and biological neural networks
On the role of network dynamics for information processing in artificial and biological neural networks
Understanding how interactions in complex systems give rise to various collective behaviours has been of interest for researchers across a wide range of fields. However, despite ma...
Development and training of neural networks for character recognition
Development and training of neural networks for character recognition
This article discusses the problem of the application of neural networks for character recognition, as well as the problem of developing methods and algorithms for the synthesis of...
Depth-aware salient object segmentation
Depth-aware salient object segmentation
Object segmentation is an important task which is widely employed in many computer vision applications such as object detection, tracking, recognition, and ret...
An Adiabatic Method to Train Binarized Artificial Neural Networks
An Adiabatic Method to Train Binarized Artificial Neural Networks
Abstract
An artificial neural network consists of neurons and synapses. Neuron gives output based on its input according to non-linear activation functions such as the Sigm...
Image Classification using Different Machine Learning Techniques
Image Classification using Different Machine Learning Techniques
<p>Artificial Neural Networks and Convolutional Neural Networks have become common tools for classification and object detection, owing to their ability to learn features wit...
Image Classification using Different Machine Learning Techniques
Image Classification using Different Machine Learning Techniques
<p>Artificial Neural Networks and Convolutional Neural Networks have become common tools for classification and object detection, owing to their ability to learn features wit...
Image Classification using Different Machine Learning Techniques
Image Classification using Different Machine Learning Techniques
<p>Artificial Neural Networks and Convolutional Neural Networks have become common tools for classification and object detection, owing to their ability to learn features wit...

