Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The structural integrity of nanoclay filled epoxy polymer under cyclic loading

View through CrossRef
Fatigue crack initiation and propagation behaviour of CFRP have been of great importance because such composites are often used in engineering components that are subjected to continuous cyclic loading. The objective of this thesis work was to investigate the damage characteristics of the fatigue properties of CFRP composites by the modification of the polymer matrix with nanoclay addition. Carbon fibre reinforced epoxy was produced via vacuum assisted resin infusion moulding method (VARIM) with nanoclay concentrations of 0wt%, 1wt%, 3wt% and 5wt%. Tension-tension fatigue tests were conducted at loading levels of 90%, 75% and 60%. The frequency that was used was 3Hz with R value of 0.1. The results showed that at nanoclay percentages of 0wt%, 1wt% and 3wt% there was a consistent trend, where the number of cycles increased in fatigue loading percentages of 90%, 75% and 60%. At 5wt% nanoclay percentage the number of fatigue cycles dropped significantly at the 90% fatigue loading. The brittle nature of the 5wt% laminate became dominate and the sample fractured early at low fatigue cycle numbers. At the 75% fatigue loading, the number of cycles increased and at 60% fatigue loading the 5wt% nanoclay sample exceeded the number of cycles of all the nanoclay percentages by 194%. This was due to the intercalated arrangement of the nanoclays favouring the slow rate of surface temperature increase, during fatigue testing, at low fatigue cycle loading. The Crack Density analysis was performed and showed that at the same time in the fatigue cycle life, the 1wt% had 55 cracks, 3wt% had 52 cracks and the 5wt% had 50 cracks, for the 60% fatigue loading. This proved that it took longer for the cracks to initiate and propagate through the sample as the nanoclay percentage increased. Impact and hardness testing showed that the 5wt% exhibited brittle behaviour, which contributed to the results above. Scanning electron microscopy examination highlighted that the agglomeration of nanoclays delayed the crack initiation and propagation through the specimen and that the extent of fatigue damage decreased as the nanoclay percentage increased. A fatigue failure matrix was developed and showed that delamination, fibre breakage and matrix failure were the predominate causes for the fatigue failure.
Durban University of Technology
Title: The structural integrity of nanoclay filled epoxy polymer under cyclic loading
Description:
Fatigue crack initiation and propagation behaviour of CFRP have been of great importance because such composites are often used in engineering components that are subjected to continuous cyclic loading.
The objective of this thesis work was to investigate the damage characteristics of the fatigue properties of CFRP composites by the modification of the polymer matrix with nanoclay addition.
Carbon fibre reinforced epoxy was produced via vacuum assisted resin infusion moulding method (VARIM) with nanoclay concentrations of 0wt%, 1wt%, 3wt% and 5wt%.
Tension-tension fatigue tests were conducted at loading levels of 90%, 75% and 60%.
The frequency that was used was 3Hz with R value of 0.
1.
The results showed that at nanoclay percentages of 0wt%, 1wt% and 3wt% there was a consistent trend, where the number of cycles increased in fatigue loading percentages of 90%, 75% and 60%.
At 5wt% nanoclay percentage the number of fatigue cycles dropped significantly at the 90% fatigue loading.
The brittle nature of the 5wt% laminate became dominate and the sample fractured early at low fatigue cycle numbers.
At the 75% fatigue loading, the number of cycles increased and at 60% fatigue loading the 5wt% nanoclay sample exceeded the number of cycles of all the nanoclay percentages by 194%.
This was due to the intercalated arrangement of the nanoclays favouring the slow rate of surface temperature increase, during fatigue testing, at low fatigue cycle loading.
The Crack Density analysis was performed and showed that at the same time in the fatigue cycle life, the 1wt% had 55 cracks, 3wt% had 52 cracks and the 5wt% had 50 cracks, for the 60% fatigue loading.
This proved that it took longer for the cracks to initiate and propagate through the sample as the nanoclay percentage increased.
Impact and hardness testing showed that the 5wt% exhibited brittle behaviour, which contributed to the results above.
Scanning electron microscopy examination highlighted that the agglomeration of nanoclays delayed the crack initiation and propagation through the specimen and that the extent of fatigue damage decreased as the nanoclay percentage increased.
A fatigue failure matrix was developed and showed that delamination, fibre breakage and matrix failure were the predominate causes for the fatigue failure.

Related Results

Cure Kinetics of Nanocomposites Prepared From Aqueous Dispersion of Nanoclay
Cure Kinetics of Nanocomposites Prepared From Aqueous Dispersion of Nanoclay
The effect of nanoclay on the cure kinetics of glass/waterborne epoxy nanocomposites is investigated. First step in sample preparation involves dispersing Cloisite® Na+, a natural ...
Developing guidelines for research institutions
Developing guidelines for research institutions
As introduced in Chapter 1, in this thesis, I developed guidelines to research institutions on how to foster research integrity. I did this by exploring how research institutions c...
Practical Technology of Toughening Epoxy Resin (II): Modification Effects of Special Engineering Plastics on Epoxy Resin
Practical Technology of Toughening Epoxy Resin (II): Modification Effects of Special Engineering Plastics on Epoxy Resin
The effects of Special engineering plastics (SEP) such as polyether ether ketone (PEEK), polyimide (PI), thermoplastic polyimide (TPI), polyphenylene sulfide (PPS), polysulfone (PS...
Solvent Uptake of Liquid Rubber Toughened Epoxy/Clay Nanocomposites
Solvent Uptake of Liquid Rubber Toughened Epoxy/Clay Nanocomposites
ABSTRACTCarboxyl‐terminated poly (butadiene‐co‐acrylonitrile) (CTBN) liquid rubber toughened epoxy (epoxy/CTBN blend) and CTBN‐toughened epoxy/clay nanocomposites (epoxy/clay/CTBN ...
The Corrosion Inhibition of Montmorillonite Nanoclay for Steel in Acidic Solution
The Corrosion Inhibition of Montmorillonite Nanoclay for Steel in Acidic Solution
The aim of this research is to study the anticorrosive behavior of a coating consisting of modified montmorillonite nanoclay as an inorganic green inhibitor. The anticorrosion prot...
Experimental analysis of tensile behaviors of polytetrafluoroethylene-coated fabrics subjected to monotonous and cyclic loading
Experimental analysis of tensile behaviors of polytetrafluoroethylene-coated fabrics subjected to monotonous and cyclic loading
This paper presents the tensile behaviors of polytetrafluoroethylene (PTFE)-coated fabrics subjected to monotonous and cyclic loading. First, uniaxial tensile tests are conducted t...
Micro and nanocomposites of polybutadienebased polyurethane liners with mineral fillers and nanoclay: thermal and mechanical properties
Micro and nanocomposites of polybutadienebased polyurethane liners with mineral fillers and nanoclay: thermal and mechanical properties
AbstractMicro and nanocomposites of hydroxyl terminated polybutadiene (HTPB)-based polyurethanes (NPU) were obtained using five mineral fillers and Cloisite 20A nanoclay, respectiv...
Barrier Polymers
Barrier Polymers
AbstractBarrier polymers are used for many packaging and protective applications. As barriers they separate a system, such as an article of food or an electronic component, from an...

Back to Top