Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Multiple interpolation problem for functions with zero spherical mean

View through CrossRef
Let $|\cdot|$ be the Euclidean norm in $\mathbb{R}^n$, $n\geq 2$. For $r>0$, weLet $|\cdot|$ be the Euclidean norm in $\mathbb{R}^n$, $n\geq 2$. For $r>0$, we denote by $V_r(\mathbb{R}^n)$ the set of functions $f\in L_{\mathrm{loc}}(\mathbb{R}^n)$ satisfying the condition \begin{equation*}\label{eq } \int_{|x|\leq r}f(x+y)dx=0\quad\text{for any}\quad y\in\mathbb{R}^n. \end{equation*} The paper investigates the interpolation of tempered growth functions of class $(V_r\cap C^{\infty})(\mathbb{R}^n)$ together with the derivatives of bounded order in a given direction. Let $d\in\mathbb{R}^n$, $\sigma\in\mathbb{R}^n\setminus\{0\}$ be fixed, $\{a_k\}_{k=1}^{\infty}$ be a sequence of points lying on the line $ \{x\in\mathbb{R}^n:\,x=d+t\sigma,\,t\in(-\infty,+\infty)\}$ and satisfying the conditions \begin{equation*}\label{equation} \underset{i\ne j}\inf\, |a_i-a_j|>0,\quad |a_k|\leq|a_{k+1}|\quad\text{for all}\quad k\in\mathbb{N}. \end{equation*} Let also $m\in\mathbb{Z}_+$ and $b_{k,j}\in\mathbb{C}$ ($k\in\mathbb{N}$, $j\in\{0,\ldots,m\}$) be a set of numbers satisfying the condition \begin{equation*}\label{eq} \underset{0\leq j\leq m}\max\, |b_{k,j}|\leq(k+1)^{\alpha} \end{equation*} for all $k\in\mathbb{N}$ and some $\alpha\geq 0$ independent of $k$. It is shown (Theorem) that, under the indicated conditions, the interpolation problem \begin{equation*}\label{ equation*} \left(\sigma_1\frac{\partial}{\partial x_1}+\ldots+\sigma_n\frac{\partial}{\partial x_n}\right)^jf(a_k)=b_{k,j},\quad k\in\mathbb{N},\quad j\in\{0,\ldots,m\}, \end{equation*} is solvable in a class of functions belonging to $(V_r\cap C^{\infty})(\mathbb{R}^n)$, which, together with all their derivatives, have growth no higher than a power-law at infinity. It is noted that the condition of separability of nodes $\{a_k\}_{k=1}^{\infty}$ in  the Theorem cannot be removed, and also that the solution of the considered interpolation problem is not the only one. In addition, it is stated that the one-dimensional analogue of the Theorem is not valid since every continuous function of class $V_r(\mathbb{R}^n)$ at $n=1$ is $2r$-periodic.
Title: Multiple interpolation problem for functions with zero spherical mean
Description:
Let $|\cdot|$ be the Euclidean norm in $\mathbb{R}^n$, $n\geq 2$.
For $r>0$, weLet $|\cdot|$ be the Euclidean norm in $\mathbb{R}^n$, $n\geq 2$.
For $r>0$, we denote by $V_r(\mathbb{R}^n)$ the set of functions $f\in L_{\mathrm{loc}}(\mathbb{R}^n)$ satisfying the condition \begin{equation*}\label{eq } \int_{|x|\leq r}f(x+y)dx=0\quad\text{for any}\quad y\in\mathbb{R}^n.
\end{equation*} The paper investigates the interpolation of tempered growth functions of class $(V_r\cap C^{\infty})(\mathbb{R}^n)$ together with the derivatives of bounded order in a given direction.
Let $d\in\mathbb{R}^n$, $\sigma\in\mathbb{R}^n\setminus\{0\}$ be fixed, $\{a_k\}_{k=1}^{\infty}$ be a sequence of points lying on the line $ \{x\in\mathbb{R}^n:\,x=d+t\sigma,\,t\in(-\infty,+\infty)\}$ and satisfying the conditions \begin{equation*}\label{equation} \underset{i\ne j}\inf\, |a_i-a_j|>0,\quad |a_k|\leq|a_{k+1}|\quad\text{for all}\quad k\in\mathbb{N}.
\end{equation*} Let also $m\in\mathbb{Z}_+$ and $b_{k,j}\in\mathbb{C}$ ($k\in\mathbb{N}$, $j\in\{0,\ldots,m\}$) be a set of numbers satisfying the condition \begin{equation*}\label{eq} \underset{0\leq j\leq m}\max\, |b_{k,j}|\leq(k+1)^{\alpha} \end{equation*} for all $k\in\mathbb{N}$ and some $\alpha\geq 0$ independent of $k$.
It is shown (Theorem) that, under the indicated conditions, the interpolation problem \begin{equation*}\label{ equation*} \left(\sigma_1\frac{\partial}{\partial x_1}+\ldots+\sigma_n\frac{\partial}{\partial x_n}\right)^jf(a_k)=b_{k,j},\quad k\in\mathbb{N},\quad j\in\{0,\ldots,m\}, \end{equation*} is solvable in a class of functions belonging to $(V_r\cap C^{\infty})(\mathbb{R}^n)$, which, together with all their derivatives, have growth no higher than a power-law at infinity.
It is noted that the condition of separability of nodes $\{a_k\}_{k=1}^{\infty}$ in  the Theorem cannot be removed, and also that the solution of the considered interpolation problem is not the only one.
In addition, it is stated that the one-dimensional analogue of the Theorem is not valid since every continuous function of class $V_r(\mathbb{R}^n)$ at $n=1$ is $2r$-periodic.

Related Results

SYSTEMATIZATION OF INTERPOLATION METHODS IN GEOMETRIC MODELING
SYSTEMATIZATION OF INTERPOLATION METHODS IN GEOMETRIC MODELING
This article proposes to show the connections between the practical problems of geometric modeling, for the solution of which there are no adequate interpolation methods. Interpola...
Experimental research on compressive strength of UHPC spherical hinge
Experimental research on compressive strength of UHPC spherical hinge
Purpose In order to reduce the impact of bridge construction on traffic under the bridge, the construction of bridges for some important traffic nodes usually adopts the swivel con...
Theoretical derivation and clinical validation of the resolution limit of human eye to spherical lens change:A Self-controlled Study
Theoretical derivation and clinical validation of the resolution limit of human eye to spherical lens change:A Self-controlled Study
AbstractBackground/AimsTo deduce theoretically and verify the resolution limit of human eye to spherical lens change for more reasonable design of the trial lenses.MethodsFirst, th...
Multivariate interpolation
Multivariate interpolation
The paper deals with iterative interpolation methods in forms of similar recursive procedures defined by a sort of simple functions (interpolation basis) not necessarily real value...
A FAST MORPHING-BASED INTERPOLATION FOR MEDICAL IMAGES: APPLICATION TO CONFORMAL RADIOTHERAPY
A FAST MORPHING-BASED INTERPOLATION FOR MEDICAL IMAGES: APPLICATION TO CONFORMAL RADIOTHERAPY
A method is presented for fast interpolation between medical images. The method is intended for both slice and projective interpolation. It allows offline interpolation between nei...
A Comparative Study of Two Temperature Interpolation Methods: A Case Study of the Middle East of Qilian Mountain
A Comparative Study of Two Temperature Interpolation Methods: A Case Study of the Middle East of Qilian Mountain
Abstract Background, aim, and scope The Middle East section of Qilian Mountain was used as the study area, and the temperature interpolation method based on DEM was ...
Distance in spatial interpolation of daily rain gauge data
Distance in spatial interpolation of daily rain gauge data
Abstract. Spatial interpolation of rain gauge data is important in forcing of hydrological simulations or evaluation of weather predictions, for example. The spatial density of ava...
Application of a semivariogram based on a deep neural network to Ordinary Kriging interpolation of elevation data
Application of a semivariogram based on a deep neural network to Ordinary Kriging interpolation of elevation data
The Ordinary Kriging method is a common spatial interpolation algorithm in geostatistics. Because the semivariogram required for kriging interpolation greatly influences this proce...

Back to Top