Javascript must be enabled to continue!
Molecular insights into sperm head shaping and its role in human male fertility
View through CrossRef
Abstract
BACKGROUND
Sperm head shaping, controlled by the acrosome-acroplaxome-manchette complex, represents a significant morphological change during spermiogenesis and involves numerous proteins expressed in a spatially and temporally specific manner. Defects in sperm head shaping frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying sperm head shaping, and its role in male infertility, remain poorly understood.
OBJECTIVE AND RATIONALE
This review aims to summarize the mechanism underlying sperm head shaping, reveal the relationship between gene defects associated with sperm head shaping and male infertility in humans and mice, and explore potential clinical improvements in ICSI treatment.
SEARCH METHODS
We searched the PubMed database for articles published in English using the keyword ‘sperm head shaping’ in combination with the following terms: ‘acrosome formation’, ‘proacrosomal vesicles (PAVs)’, ‘manchette’, ‘perinuclear theca (PT)’, ‘chromatin condensation’, ‘linker of nucleoskeleton and cytoskeleton (LINC) complex’, ‘histone-to-protamine (HTP) transition’, ‘male infertility’, ‘ICSI’, and ‘artificial oocyte activation (AOA)’. The selected publications until 1 August 2024 were critically summarized, integrated, and thoroughly discussed, and the irrelevant literature were excluded.
OUTCOMES
A total of 6823 records were retrieved. After careful screening, integrating relevant literature, and excluding articles unrelated to the topic of this review, 240 articles were ultimately included in the analysis. Firstly, we reviewed the important molecular events and structures integral to sperm head shaping, including PAV formation to fusion, acrosome attachment to the nucleus, structure and function of the manchette, PT, chromatin condensation, and HTP transition. Then, we set forth human male infertility associated with sperm head shaping and identified genes related to sperm head shaping resulting in teratozoospermia concomitant with oligozoospermia and asthenozoospermia. Finally, we summarized the outcomes of ICSI in cases of male infertility resulting from mutations in the genes associated with sperm head shaping, as well as the ICSI outcomes through AOA for infertile men with impaired sperm head.
WIDER IMPLICATIONS
Understanding the molecular mechanisms of sperm head shaping and its relationship with human male infertility holds profound clinical implications, which may contribute to risk prediction, genetic diagnosis, and the potential treatment of human male infertility.
Oxford University Press (OUP)
Title: Molecular insights into sperm head shaping and its role in human male fertility
Description:
Abstract
BACKGROUND
Sperm head shaping, controlled by the acrosome-acroplaxome-manchette complex, represents a significant morphological change during spermiogenesis and involves numerous proteins expressed in a spatially and temporally specific manner.
Defects in sperm head shaping frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying sperm head shaping, and its role in male infertility, remain poorly understood.
OBJECTIVE AND RATIONALE
This review aims to summarize the mechanism underlying sperm head shaping, reveal the relationship between gene defects associated with sperm head shaping and male infertility in humans and mice, and explore potential clinical improvements in ICSI treatment.
SEARCH METHODS
We searched the PubMed database for articles published in English using the keyword ‘sperm head shaping’ in combination with the following terms: ‘acrosome formation’, ‘proacrosomal vesicles (PAVs)’, ‘manchette’, ‘perinuclear theca (PT)’, ‘chromatin condensation’, ‘linker of nucleoskeleton and cytoskeleton (LINC) complex’, ‘histone-to-protamine (HTP) transition’, ‘male infertility’, ‘ICSI’, and ‘artificial oocyte activation (AOA)’.
The selected publications until 1 August 2024 were critically summarized, integrated, and thoroughly discussed, and the irrelevant literature were excluded.
OUTCOMES
A total of 6823 records were retrieved.
After careful screening, integrating relevant literature, and excluding articles unrelated to the topic of this review, 240 articles were ultimately included in the analysis.
Firstly, we reviewed the important molecular events and structures integral to sperm head shaping, including PAV formation to fusion, acrosome attachment to the nucleus, structure and function of the manchette, PT, chromatin condensation, and HTP transition.
Then, we set forth human male infertility associated with sperm head shaping and identified genes related to sperm head shaping resulting in teratozoospermia concomitant with oligozoospermia and asthenozoospermia.
Finally, we summarized the outcomes of ICSI in cases of male infertility resulting from mutations in the genes associated with sperm head shaping, as well as the ICSI outcomes through AOA for infertile men with impaired sperm head.
WIDER IMPLICATIONS
Understanding the molecular mechanisms of sperm head shaping and its relationship with human male infertility holds profound clinical implications, which may contribute to risk prediction, genetic diagnosis, and the potential treatment of human male infertility.
Related Results
P-046 Effect of different sperm chromatin dispersion type on IVF/ICSI outcome and offspring profile
P-046 Effect of different sperm chromatin dispersion type on IVF/ICSI outcome and offspring profile
Abstract
Study question
Whether the percentage of different sperm chromatin dispersion type are associated with the IVF/ICSI out...
P-051 Male cancer patient sperm cryopreservation for fertility preservation: 11-year multicenter experience: 16 regions of the mainland China national sperm
P-051 Male cancer patient sperm cryopreservation for fertility preservation: 11-year multicenter experience: 16 regions of the mainland China national sperm
Abstract
Study question
What is the current status of fertility preservation (FP) of male cancer utilization, efficacy and safet...
P–025 Sperm selection using a modified “swim up” technique in absence of sperm centrifugation improve sperm DNA fragmentation and decreases miscarriage rate
P–025 Sperm selection using a modified “swim up” technique in absence of sperm centrifugation improve sperm DNA fragmentation and decreases miscarriage rate
Abstract
Study question
Is it useful to avoid sperm centrifugation in laboratory routine work to improve sperm quality and repro...
P-072 Fresh testicular sperm seems to yield more fertilization abnormalities and early pregnancy loss than frozen testicular sperm
P-072 Fresh testicular sperm seems to yield more fertilization abnormalities and early pregnancy loss than frozen testicular sperm
Abstract
Study question
How do ICSI outcomes using fresh testicular sperm, compare to those using frozen samples cryopreserved f...
Cometary Physics Laboratory: spectrophotometric experiments
Cometary Physics Laboratory: spectrophotometric experiments
<p><strong><span dir="ltr" role="presentation">1. Introduction</span></strong&...
A novel CFTR-AQP7 protein complex regulates glycerol transport and motility of human sperm
A novel CFTR-AQP7 protein complex regulates glycerol transport and motility of human sperm
Abstract
STUDY QUESTION
Does the interaction between CFTR and AQP7 in human spermatozoa play a role in the molecular mech...
[RETRACTED] Rhino XL Male Enhancement v1
[RETRACTED] Rhino XL Male Enhancement v1
[RETRACTED]Rhino XL Reviews, NY USA: Studies show that testosterone levels in males decrease constantly with growing age. There are also many other problems that males face due ...
Costs and benefits of giant sperm and sperm storage organs in Drosophila melanogaster
Costs and benefits of giant sperm and sperm storage organs in Drosophila melanogaster
ABSTRACTIn the Drosophila lineage, both sperm and the primary female sperm storage organ, the seminal receptacle (SR), may reach extraordinary lengths. In D. melanogaster, long SRs...

