Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages

View through CrossRef
AbstractNLRP3 inflammasome is a vital player in macrophages pyroptosis, which is a type of proinflammatory cell-death and takes part in the pathogenesis of atherosclerosis. In this study, we used apoE−/− mice and ox-LDL induced THP-1 derived macrophages to explore the mechanisms of MCC950, a selective NLRP3 inhibitor in treating atherosclerosis. For the in vivo study, MCC950 was intraperitoneal injected to 8-week-old apoE−/− mice fed with high-fat diet for 12 weeks. For the in vitro study, THP-1 derived macrophages were treated with ox-LDL and MCC950 for 48 h. MCC950 administration reduced plaque areas and macrophages contents, but did not improve the serum lipid profiles in aortic root of apoE−/− mice. MCC950 inhibited the activation of NLRP3/ASC/Caspase-1/GSDMD-N axis, and alleviated macrophages pyroptosis and the production of IL-1β and IL-18 both in aorta and in cell lysates. However, MCC950 did not affect the expression of TLR4 or the mRNA levels of NLRP3 inflammasome and its downstream proteins, suggesting that MCC950 had no effects on the priming of NLRP3 inflammasome activation in macrophages. The anti-atherosclerotic mechanisms of MCC950 on attenuating macrophages inflammation and pyroptosis involved in inhibiting the assembly and activation of NLRP3 inflammasome, rather than interrupting its priming.
Title: The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages
Description:
AbstractNLRP3 inflammasome is a vital player in macrophages pyroptosis, which is a type of proinflammatory cell-death and takes part in the pathogenesis of atherosclerosis.
In this study, we used apoE−/− mice and ox-LDL induced THP-1 derived macrophages to explore the mechanisms of MCC950, a selective NLRP3 inhibitor in treating atherosclerosis.
For the in vivo study, MCC950 was intraperitoneal injected to 8-week-old apoE−/− mice fed with high-fat diet for 12 weeks.
For the in vitro study, THP-1 derived macrophages were treated with ox-LDL and MCC950 for 48 h.
MCC950 administration reduced plaque areas and macrophages contents, but did not improve the serum lipid profiles in aortic root of apoE−/− mice.
MCC950 inhibited the activation of NLRP3/ASC/Caspase-1/GSDMD-N axis, and alleviated macrophages pyroptosis and the production of IL-1β and IL-18 both in aorta and in cell lysates.
However, MCC950 did not affect the expression of TLR4 or the mRNA levels of NLRP3 inflammasome and its downstream proteins, suggesting that MCC950 had no effects on the priming of NLRP3 inflammasome activation in macrophages.
The anti-atherosclerotic mechanisms of MCC950 on attenuating macrophages inflammation and pyroptosis involved in inhibiting the assembly and activation of NLRP3 inflammasome, rather than interrupting its priming.

Related Results

The Transcription Factor Gfi1 Negatively Regulates NLRP3 inflammasome-Mediated IL-1β Secretion in Macrophages
The Transcription Factor Gfi1 Negatively Regulates NLRP3 inflammasome-Mediated IL-1β Secretion in Macrophages
Abstract Background: IL-1β secretion is tightly controlled at the transcriptional and post-translational levels. The NLRP3 inflammasome, a multiprotein complex compo...
MCC950 Reduces Neuronal Apoptosis in Spinal Cord Injury in Mice
MCC950 Reduces Neuronal Apoptosis in Spinal Cord Injury in Mice
Background: Traumatic Spinal Cord Injury (SCI) is a severe condition usually accompanied by an inflammatory process that gives rise to uncontrolled local apoptosis and a subsequent...
NLRP3 inflammasome inhibitor MCC950 attenuates primary dysmenorrhea in mice via the NF-κB/COX-2/PG pathway
NLRP3 inflammasome inhibitor MCC950 attenuates primary dysmenorrhea in mice via the NF-κB/COX-2/PG pathway
Abstract Background: Primary dysmenorrhea (PD) constitutes a common gynecological disease among young women. The NLRP3 inflammasome may be activated and expressed in PD, bu...
Effect of miR-223-3p on cell pyroptosis in myelodysplastic syndrome and its mechanism via regulating the expression of NLRP3
Effect of miR-223-3p on cell pyroptosis in myelodysplastic syndrome and its mechanism via regulating the expression of NLRP3
This study aimed to investigate the regulatory mechanism of the miR-223-3p/NLRP3 signaling axis in the progression of myelodysplastic syndrome (MDS). For this purpose, SKM-1 cells ...
HMGB1 mediates lipopolysaccharide-induced macrophage autophagy and pyroptosis
HMGB1 mediates lipopolysaccharide-induced macrophage autophagy and pyroptosis
Abstract Autophagy and pyroptosis of macrophages play important protective or detrimental roles in sepsis. However, the underlying mechanisms remain unclear. High mobility ...
LPS-induced extracellular AREG triggers macrophages pyroptosis through EGFR/TLR4 signaling pathway
LPS-induced extracellular AREG triggers macrophages pyroptosis through EGFR/TLR4 signaling pathway
Abstract Amphiregulin (AREG), as another EGF family member, is anchored to the cell surface as a transmembrane protein. In response to external stimulus, its extracellular ...
Pan-Cancer Analyses of Pyroptosis With Functional Implications in Prognosis and Immunotherapy in Cancer
Pan-Cancer Analyses of Pyroptosis With Functional Implications in Prognosis and Immunotherapy in Cancer
Abstract Background Programmed cell death is an active and orderly form of cell death regulated by intracellular genes, which plays an important role in the normal occurre...
Zhilong Huoxue Tongyu Capsule Alleviated the Pyroptosis of Vascular Endothelial Cells Induced by ox-LDL through miR-30b-5p/NLRP3
Zhilong Huoxue Tongyu Capsule Alleviated the Pyroptosis of Vascular Endothelial Cells Induced by ox-LDL through miR-30b-5p/NLRP3
Background. Our previous studies have demonstrated a protective role of Zhilong Huoxue Tongyu capsule in atherosclerosis (AS); however, the molecular mechanisms are unclear. Method...

Back to Top