Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

EGFR inhibition reverses resistance to lenvatinib in hepatocellular carcinoma cells

View through CrossRef
Abstract Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Lenvatinib is approved as a first-line treatment for unresectable HCC. The therapeutic duration of lenvatinib is limited by resistance, but the underlying mechanism is unclear. Methods To establish lenvatinib-resistant cells, Hep3B cells were initially treated with 3 µM lenvatinib. The concentration was gradually increased by 1µM or 0.5µM per week and it reached to 7.5µM 2 months after the initial exposure to lenvatinib. The biological characteristics of these cells were analyzed by ERK activation in the MAPK signaling pathway and a human phospho‐receptor tyrosine kinase (RTK) antibody array. Factors possibly related to lenvatinib resistance were analyzed using inhibitors, and cell proliferation was analyzed. Results We established lenvatinib-resistant HCC cells (LR cells) by long-term exposure to lenvatinib. Lenvatinib reduced ERK activation in the parent cells, but not in the LR cells. RTK array analysis showed that the activities of EGFR and insulin-like growth factor 1 receptor (IGF1R)/insulin receptor (INSR) were significantly increased in LR cells, whereas the activities of other RTKs were unchanged. Erlotinib, a widely used EGFR inhibitor, downregulated ERK activation in LR cells. The proliferation of LR cells will also be affected when lenvatinib is combined with erlotinib to treat LR cells. In contrast, inhibition of IGFR/INSR did not affect ERK activation or cell proliferation. Scavenging of reactive oxygen species (ROS) ameliorated the enhanced EGFR activation in LR cells. Conclusions Lenvatinib resistance was induced by enhanced EGFR activation, possibly via ROS accumulation, in lenvatinib-resistant cells.These findings may enable the development of lenvatinib combination therapies for HCC.
Title: EGFR inhibition reverses resistance to lenvatinib in hepatocellular carcinoma cells
Description:
Abstract Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide.
Lenvatinib is approved as a first-line treatment for unresectable HCC.
The therapeutic duration of lenvatinib is limited by resistance, but the underlying mechanism is unclear.
Methods To establish lenvatinib-resistant cells, Hep3B cells were initially treated with 3 µM lenvatinib.
The concentration was gradually increased by 1µM or 0.
5µM per week and it reached to 7.
5µM 2 months after the initial exposure to lenvatinib.
The biological characteristics of these cells were analyzed by ERK activation in the MAPK signaling pathway and a human phospho‐receptor tyrosine kinase (RTK) antibody array.
Factors possibly related to lenvatinib resistance were analyzed using inhibitors, and cell proliferation was analyzed.
Results We established lenvatinib-resistant HCC cells (LR cells) by long-term exposure to lenvatinib.
Lenvatinib reduced ERK activation in the parent cells, but not in the LR cells.
RTK array analysis showed that the activities of EGFR and insulin-like growth factor 1 receptor (IGF1R)/insulin receptor (INSR) were significantly increased in LR cells, whereas the activities of other RTKs were unchanged.
Erlotinib, a widely used EGFR inhibitor, downregulated ERK activation in LR cells.
The proliferation of LR cells will also be affected when lenvatinib is combined with erlotinib to treat LR cells.
In contrast, inhibition of IGFR/INSR did not affect ERK activation or cell proliferation.
Scavenging of reactive oxygen species (ROS) ameliorated the enhanced EGFR activation in LR cells.
Conclusions Lenvatinib resistance was induced by enhanced EGFR activation, possibly via ROS accumulation, in lenvatinib-resistant cells.
These findings may enable the development of lenvatinib combination therapies for HCC.

Related Results

Abstract 1739: Reversal of lenvatinib resistance by curcumin via EGFR signaling pathway in hepatocellular carcinoma
Abstract 1739: Reversal of lenvatinib resistance by curcumin via EGFR signaling pathway in hepatocellular carcinoma
Abstract Background: Patients with unresectable advanced hepatocellular carcinoma (HCC) are often treated with systemic therapies, and lenvatinib is currently used a...
EGFR inhibition reverses resistance to lenvatinib in hepatocellular carcinoma cells
EGFR inhibition reverses resistance to lenvatinib in hepatocellular carcinoma cells
AbstractHepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Lenvatinib is approved as a first-line treatment for unresectable HCC. The therapeutic...
Breast Carcinoma within Fibroadenoma: A Systematic Review
Breast Carcinoma within Fibroadenoma: A Systematic Review
Abstract Introduction Fibroadenoma is the most common benign breast lesion; however, it carries a potential risk of malignant transformation. This systematic review provides an ove...
Plasma ctDNA biomarker study in patients with non-small cell lung cancer with EGFR exon 20 insertion mutation treated with sunvozertinib.
Plasma ctDNA biomarker study in patients with non-small cell lung cancer with EGFR exon 20 insertion mutation treated with sunvozertinib.
8563 Background: There are limited reports on biomarker studies of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertion mutation (exon...
Abstract 557: Noninvasive analysis of acquired resistance to EGFR-TKI
Abstract 557: Noninvasive analysis of acquired resistance to EGFR-TKI
Abstract BACKGROUND Epidermal growth factor receptor (EGFR) T790M mutation is associated with EGFR tyrosine kinase inhibitors (EGFR-TKIs) resistance i...

Back to Top