Javascript must be enabled to continue!
Aero-Engine Titanium from Alloys to Composites
View through CrossRef
The aero-engine has provided the major drive for the development of new improved titanium alloys in recent years. This paper covers these developments from the workhorse alloy Titanium 6/4 and it’s higher temperature stable mates through to the more exotic intermetallic materials and on to their reinforcement with ceramics.
The use of Ti6/4 alloy is now widespread throughout the aero space industry providing a good combination of strength at moderate temperatures (~300°C) a relatively low density and a wide range of processing options ranging from castings to forgings to powder HIP and diffusion bonding. Alloy development for the aero-engine essentially concentrated on either increasing the temperature capability and creep resistance or increasing the strength at intermediate temperatures. Alloys such as Ti 6242 and IMI 834 were aimed at compressor disc applications with operation up to around 600°C. Improvements resulted from compositional control and thermal processing to optimize the microstructure for creep and fatigue. High strength intermediate temperature capability (~500°C) alloys were also developed (Ti6246) where higher levels of molybdenum balance the alpha strengthening additions.
The drive for lighter weight led to the development of titanium intermetallic systems. Alloys such as 45-2-2XD and Alloy 7 have been the subject of much research and manufacturing development over the last 20 years, demonstrating that they are capable of operating at temperatures well above those of conventional titanium. More recently, alloys with higher additions of Nb and Ta have shown improved mechanical properties and offer promise to extend the application of TiAl above 700°C.
In parallel with intermetallic developments combining titanium alloys with the extreme high strength of ceramic fibres has proved irresistible and many ways to produce titanium composites have been developed. The majority of application development has focused on Ti6/4 alloy as the matrix although other matrix alloys have been investigated and tested in U.S. engine demonstrators. Recently a combination of Ti-22Al-26Nb disks reinforced with orthorhombic MMC ran for over 100 hours in an engine test. However, none of these niche composite systems has yet made the transition into large volume production and the fibre reinforced Ti6/4 system probably offers the greatest potential for implementation.
The main barrier to the take up of both advanced intermetallics and titanium composites is the cost of raw materials and processing. The challenge still exists to produce net shape components and provide weight savings at an acceptable cost. This will be the key to future exploitation.
Title: Aero-Engine Titanium from Alloys to Composites
Description:
The aero-engine has provided the major drive for the development of new improved titanium alloys in recent years.
This paper covers these developments from the workhorse alloy Titanium 6/4 and it’s higher temperature stable mates through to the more exotic intermetallic materials and on to their reinforcement with ceramics.
The use of Ti6/4 alloy is now widespread throughout the aero space industry providing a good combination of strength at moderate temperatures (~300°C) a relatively low density and a wide range of processing options ranging from castings to forgings to powder HIP and diffusion bonding.
Alloy development for the aero-engine essentially concentrated on either increasing the temperature capability and creep resistance or increasing the strength at intermediate temperatures.
Alloys such as Ti 6242 and IMI 834 were aimed at compressor disc applications with operation up to around 600°C.
Improvements resulted from compositional control and thermal processing to optimize the microstructure for creep and fatigue.
High strength intermediate temperature capability (~500°C) alloys were also developed (Ti6246) where higher levels of molybdenum balance the alpha strengthening additions.
The drive for lighter weight led to the development of titanium intermetallic systems.
Alloys such as 45-2-2XD and Alloy 7 have been the subject of much research and manufacturing development over the last 20 years, demonstrating that they are capable of operating at temperatures well above those of conventional titanium.
More recently, alloys with higher additions of Nb and Ta have shown improved mechanical properties and offer promise to extend the application of TiAl above 700°C.
In parallel with intermetallic developments combining titanium alloys with the extreme high strength of ceramic fibres has proved irresistible and many ways to produce titanium composites have been developed.
The majority of application development has focused on Ti6/4 alloy as the matrix although other matrix alloys have been investigated and tested in U.
S.
engine demonstrators.
Recently a combination of Ti-22Al-26Nb disks reinforced with orthorhombic MMC ran for over 100 hours in an engine test.
However, none of these niche composite systems has yet made the transition into large volume production and the fibre reinforced Ti6/4 system probably offers the greatest potential for implementation.
The main barrier to the take up of both advanced intermetallics and titanium composites is the cost of raw materials and processing.
The challenge still exists to produce net shape components and provide weight savings at an acceptable cost.
This will be the key to future exploitation.
Related Results
15th World Conference on Titanium Chapter 2: Aerospace Applications
15th World Conference on Titanium Chapter 2: Aerospace Applications
RECENT ADVANCES IN TITANIUM ALLOY EXTRUSIONS FOR AEROSPACE APPLICATIONS
TECHNOLOGY CAPABILITY STUDY OF LASER POWDER BED FUSION TO PRODUCE LARGE CRITICAL AEROSPACE S...
Development of Low Elastic Modulus Titanium Alloys as Implant Biomaterials
Development of Low Elastic Modulus Titanium Alloys as Implant Biomaterials
Biomaterials have always been the focus of material scientists and engineers. Titanium and its alloys have favorable properties, such as high strength, low density, good corrosion ...
Study on Titanium Fire Suppression Technology for Aero-Engine Uncontained Failures
Study on Titanium Fire Suppression Technology for Aero-Engine Uncontained Failures
Abstract
In aero-engine containment tests, titanium alloy blades exploding and flying off generate a large amount of titanium fire, affecting the capture and recording of t...
Development of the Tour Split-Cycle Internal Combustion Engine
Development of the Tour Split-Cycle Internal Combustion Engine
<div class="section abstract"><div class="htmlview paragraph">The Tour engine is a novel split-cycle internal combustion engine (ICE) that divides the four-stroke Otto ...
Significant Step Towards Efficient Electrical Discharge Machining Titanium Alloys
Significant Step Towards Efficient Electrical Discharge Machining Titanium Alloys
Abstract
There have been high demands of high-quality, highly efficient processing methodologies on "difficult-to-cut" titanium alloys. The current methods for dealing with...
Quantitative Feedback Control of Air Path in Diesel-Dual-Fuel Engine
Quantitative Feedback Control of Air Path in Diesel-Dual-Fuel Engine
<div class="section abstract"><div class="htmlview paragraph">In this paper, we investigate a multivariable control of air path of a diesel-dual-fuel (DDF) engine. The ...
A Novel Adaptive Generation Method for Initial Guess Values of Component-Level Aero-Engine Start-Up Models
A Novel Adaptive Generation Method for Initial Guess Values of Component-Level Aero-Engine Start-Up Models
To solve the difficult problem of selecting initial guess values for component-level aero-engine start-up models, a novel method based on the flow-based back-calculation algorithm ...
Life assessment of a high temperature probe designed for performance evaluation and health monitoring of an aero gas turbine engine
Life assessment of a high temperature probe designed for performance evaluation and health monitoring of an aero gas turbine engine
Abstract
Temperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starti...

