Javascript must be enabled to continue!
Adipose-Derived Stem Cells from Systemic Sclerosis Patients Maintain Pro-Angiogenic and Antifibrotic Paracrine Effects In Vitro
View through CrossRef
Innovative therapies based on autologous adipose-derived stem/stromal cells (ASC) are currently being evaluated for treatment of systemic sclerosis (SSc). Although paracrine angiogenic and antifibrotic effects are considered the predominant mechanisms of ASC therapeutic potential, the impact of SSc on ASC paracrine functions remains controversial. In this study, phenotype, senescence, differentiation potential, and molecular profile were determined in ASC from SSc patients (SSc-ASC) (n = 7) and healthy donors (HD-ASC) (n = 7). ASC were co-cultured in indirect models with dermal fibroblasts (DF) from SSc patients or endothelial cells to assess their pro-angiogenic and antifibrotic paracrine effects. The angiogenic activity of endothelial cells was measured in vitro using tube formation and spheroid assays. DF collagen and alpha smooth muscle actin (αSMA) content were quantified after five days of co-culture with ASC. Differentiation capacity, senescence, and mRNA profiles did not differ significantly between SSc-ASC and HD-ASC. SSc-ASC retained the ability to stimulate angiogenesis through paracrine mechanisms; however, functional assays revealed reduced potential compared to HD-ASC. DF fibrosis markers were significantly decreased after co-culture with SSc-ASC. Together, these results indicate that SSc effects do not significantly compromise the angiogenic and the antifibrotic paracrine properties of ASC, thereby supporting further development of ASC-based autologous therapies for SSc treatment.
Title: Adipose-Derived Stem Cells from Systemic Sclerosis Patients Maintain Pro-Angiogenic and Antifibrotic Paracrine Effects In Vitro
Description:
Innovative therapies based on autologous adipose-derived stem/stromal cells (ASC) are currently being evaluated for treatment of systemic sclerosis (SSc).
Although paracrine angiogenic and antifibrotic effects are considered the predominant mechanisms of ASC therapeutic potential, the impact of SSc on ASC paracrine functions remains controversial.
In this study, phenotype, senescence, differentiation potential, and molecular profile were determined in ASC from SSc patients (SSc-ASC) (n = 7) and healthy donors (HD-ASC) (n = 7).
ASC were co-cultured in indirect models with dermal fibroblasts (DF) from SSc patients or endothelial cells to assess their pro-angiogenic and antifibrotic paracrine effects.
The angiogenic activity of endothelial cells was measured in vitro using tube formation and spheroid assays.
DF collagen and alpha smooth muscle actin (αSMA) content were quantified after five days of co-culture with ASC.
Differentiation capacity, senescence, and mRNA profiles did not differ significantly between SSc-ASC and HD-ASC.
SSc-ASC retained the ability to stimulate angiogenesis through paracrine mechanisms; however, functional assays revealed reduced potential compared to HD-ASC.
DF fibrosis markers were significantly decreased after co-culture with SSc-ASC.
Together, these results indicate that SSc effects do not significantly compromise the angiogenic and the antifibrotic paracrine properties of ASC, thereby supporting further development of ASC-based autologous therapies for SSc treatment.
Related Results
Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness
The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness
Abstract
Hematopoietic cells are arranged in a hierarchy where stem and progenitor cells differentiate into mature blood cells. Likewise, AML (Acute Myeloid Leukemia...
THE ROLE OF PHYSICAL EXERCISE IN REDUCING INFLAMMATION IN PATIENTS WITH SYSTEMIC SCLEROSIS
THE ROLE OF PHYSICAL EXERCISE IN REDUCING INFLAMMATION IN PATIENTS WITH SYSTEMIC SCLEROSIS
Introduction and Aim: Systemic sclerosis (SSc) is a chronic, progressive disease that leads to multi-organ failure. In its pathogenesis, inflammation plays a significant role, part...
Fractalkine/CX3CR1 Signaling Promotes Angiogenic Potentials in CX3CR1 Expressing Monocytes
Fractalkine/CX3CR1 Signaling Promotes Angiogenic Potentials in CX3CR1 Expressing Monocytes
Abstract
Introduction : Myelo-monocytic cells expressing CD11b are involved in angiogenesis, but their specific roles and underlying mechanisms are unclear. CX3CR1 i...
Differential marker expression by cultures rich in mesenchymal stem cells
Differential marker expression by cultures rich in mesenchymal stem cells
AbstractBackgroundMesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires...
Optimal structure of heterogeneous stem cell niche: The importance of cell migration in delaying tumorigenesis
Optimal structure of heterogeneous stem cell niche: The importance of cell migration in delaying tumorigenesis
AbstractStudying the stem cell niche architecture is a crucial step for investigating the process of oncogenesis and obtaining an effective stem cell therapy for various cancers. R...
A systematic literature review of Janus kinase inhibitors for the treatment of systemic sclerosis
A systematic literature review of Janus kinase inhibitors for the treatment of systemic sclerosis
Objectives:
The use of Janus kinase inhibitors is increasing in systemic sclerosis, a complex autoimmune disease characterized by fibrosis, vasculopathy, and immune dys...
2065-LB: Slug Regulates Adipogenesis and Adipose Tissue Growth
2065-LB: Slug Regulates Adipogenesis and Adipose Tissue Growth
Adipose stem cell commitment, proliferation, and differentiation critically regulate adipose tissue development and homeostasis. Transcription factor Slug, also known as Snai2, is ...

