Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Effect of Cross-Shaped Circular Jet Array on Impingement Heat Transfer

View through CrossRef
The purpose of this study is to clarify heat transfer characteristics for the high cooling performance with multiple jet impingement. In the present study, the influence of the interaction among adjacent impinging jets on heat transfer of target surface is experimentally investigated. The study is focused on the effect of jet injection shape on the heat transfer. 3×3 square array of cross-shaped circular jet is tested. Injection distances L are 2 and 4 jet hole diameters, and jet-to-jet spacing S are 4, 6 and 8 jet hole diameters. Experiments are conducted for a constant Reynolds number Re = 4,680 based on the jet hole diameter. Steady state thermochromic liquid crystal technique is employed to measure local and area averaged Nusselt numbers. The flow field is visualized by smoke-wire and oil flow techniques. It is found that the cross-shaped circular jet array improves heat transfer at the intermediate area enclosed by four impinging jets compared to that of circular jet array at the narrow injection distance. In the case of cross-shaped circular jet array, the wall jet produces a stronger turbulence than that of circular jet, which makes the heat transfer push up toward the apex of square detachment line at injection distance L/D = 2 and jet-to-jet spacing S/D = 6 and 8.
Title: Effect of Cross-Shaped Circular Jet Array on Impingement Heat Transfer
Description:
The purpose of this study is to clarify heat transfer characteristics for the high cooling performance with multiple jet impingement.
In the present study, the influence of the interaction among adjacent impinging jets on heat transfer of target surface is experimentally investigated.
The study is focused on the effect of jet injection shape on the heat transfer.
3×3 square array of cross-shaped circular jet is tested.
Injection distances L are 2 and 4 jet hole diameters, and jet-to-jet spacing S are 4, 6 and 8 jet hole diameters.
Experiments are conducted for a constant Reynolds number Re = 4,680 based on the jet hole diameter.
Steady state thermochromic liquid crystal technique is employed to measure local and area averaged Nusselt numbers.
The flow field is visualized by smoke-wire and oil flow techniques.
It is found that the cross-shaped circular jet array improves heat transfer at the intermediate area enclosed by four impinging jets compared to that of circular jet array at the narrow injection distance.
In the case of cross-shaped circular jet array, the wall jet produces a stronger turbulence than that of circular jet, which makes the heat transfer push up toward the apex of square detachment line at injection distance L/D = 2 and jet-to-jet spacing S/D = 6 and 8.

Related Results

Conjugate Heat Transfer Characteristics of a Film-Cooled Turbine Blade Leading Edge With Staggered-Oblique Impinging Jets
Conjugate Heat Transfer Characteristics of a Film-Cooled Turbine Blade Leading Edge With Staggered-Oblique Impinging Jets
Abstract The turbine blade leading edge is subjected to harsh conditions due to high heat loads and unfavorable compact structures. To improve the cooling performanc...
Impingement/Effusion Cooling With Low Coolant Mass Flow
Impingement/Effusion Cooling With Low Coolant Mass Flow
A low coolant mass flow impingement/effusion design for a low NOx combustor wall cooling application was predicted, using conjugate heat transfer (CHT) computational fluid dynamics...
Effects of Rotation on Jet Impingement Channel Heat Transfer
Effects of Rotation on Jet Impingement Channel Heat Transfer
The effects of the Coriolis force and centrifugal buoyancy is investigated in rotating internal serpentine coolant channels in turbine blades. For complex flow in rotating channels...
Effect of Jet Shape of Square Array of Multi-Impinging Jets on Heat Transfer
Effect of Jet Shape of Square Array of Multi-Impinging Jets on Heat Transfer
It is necessary to increase turbine inlet temperature to improve the performance of the aircraft gas turbine engine. Therefore, effective cooling techniques are still required. The...
Cavitation in Submerged Water Jet at High Jet Pressure
Cavitation in Submerged Water Jet at High Jet Pressure
Recent industrial applications have unfolded a promising prospect for submerged water jet. Apart from widely acknowledged water jet properties, submerged water jet is characterized...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
Study on the image recognition of ammonia ignition process induced by methanol micro-jet
Study on the image recognition of ammonia ignition process induced by methanol micro-jet
<div class="section abstract"><div class="htmlview paragraph">Ammonia is regarded as a possible carbon-free energy source for engines, drawing more and more attention. ...
Heat Transfer in Non-Newtonian Laminar Impinging Jets
Heat Transfer in Non-Newtonian Laminar Impinging Jets
Numerical results are presented for laminar impinging flow and heat transfer with a non-Newtonian inelastic fluid in a planar two dimensional geometry. Bifurcation diagrams are com...

Back to Top