Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Structural heterogeneity in and around the fold-and-thrust belt of the Hidaka Collision zone, Hokkaido, Japan and its relationship to the aftershock activity of the 2018 Hokkaido Eastern Iburi Earthquake

View through CrossRef
AbstractThe Hokkaido Eastern Iburi Earthquake (M = 6.7) occurred on Sep. 6, 2018 in the southern part of Central Hokkaido, Japan. Since Paleogene, this region has experienced the dextral oblique transpression between the Eurasia and North American (Okhotsk) Plates and the subsequent collision between the Northeast Japan Arc and the Kuril Arc due to the oblique subduction of the Pacific Plate. This earthquake occurred beneath the foreland fold-and-thrust belt of the Hidaka Collision zone developed by the collision process, and is characterized by its deep focal depth (~ 37 km) and complicated rupture process. The reanalyses of controlled source seismic data collected in the 1998–2000 Hokkaido Transect Project revealed the detailed structure beneath the fold-and-thrust belt, and its relationship with the aftershock activity of this earthquake. Our reflection processing using the CRS/MDRS stacking method imaged for the first time the lower crust and uppermost mantle structures of the Northeast Japan Arc underthrust beneath a thick (~ 5–10 km) sedimentary package of the fold-and-thrust belt. Based on the analysis of the refraction/wide-angle reflection data, the total thickness of this Northeast Japan Arc crust is only 16–22 km. The Moho is at depths of 26–28 km in the source region of the Hokkaido Eastern Iburi Earthquake. Our hypocenter determination using a 3D structure model shows that most of the aftershocks are distributed in a depth range of 7–45 km with steep geometry facing to the east. The seismic activity is quite low within the thick sediments of the fold–thrust belt, from which we find no indication on the relationship of this event with the shallow (< 10–15 km) and rather flat active faults developed in the fold-and-thrust belt. On the other hand, a number of aftershocks are distributed below the Moho. This high activity may be caused by the cold crust delaminated from the Kuril Arc side by the arc–arc collision, which prevents the thermal circulation and cools the forearc uppermost mantle to generate an environment more favorable for brittle fracture.
Title: Structural heterogeneity in and around the fold-and-thrust belt of the Hidaka Collision zone, Hokkaido, Japan and its relationship to the aftershock activity of the 2018 Hokkaido Eastern Iburi Earthquake
Description:
AbstractThe Hokkaido Eastern Iburi Earthquake (M = 6.
7) occurred on Sep.
6, 2018 in the southern part of Central Hokkaido, Japan.
Since Paleogene, this region has experienced the dextral oblique transpression between the Eurasia and North American (Okhotsk) Plates and the subsequent collision between the Northeast Japan Arc and the Kuril Arc due to the oblique subduction of the Pacific Plate.
This earthquake occurred beneath the foreland fold-and-thrust belt of the Hidaka Collision zone developed by the collision process, and is characterized by its deep focal depth (~ 37 km) and complicated rupture process.
The reanalyses of controlled source seismic data collected in the 1998–2000 Hokkaido Transect Project revealed the detailed structure beneath the fold-and-thrust belt, and its relationship with the aftershock activity of this earthquake.
Our reflection processing using the CRS/MDRS stacking method imaged for the first time the lower crust and uppermost mantle structures of the Northeast Japan Arc underthrust beneath a thick (~ 5–10 km) sedimentary package of the fold-and-thrust belt.
Based on the analysis of the refraction/wide-angle reflection data, the total thickness of this Northeast Japan Arc crust is only 16–22 km.
The Moho is at depths of 26–28 km in the source region of the Hokkaido Eastern Iburi Earthquake.
Our hypocenter determination using a 3D structure model shows that most of the aftershocks are distributed in a depth range of 7–45 km with steep geometry facing to the east.
The seismic activity is quite low within the thick sediments of the fold–thrust belt, from which we find no indication on the relationship of this event with the shallow (< 10–15 km) and rather flat active faults developed in the fold-and-thrust belt.
On the other hand, a number of aftershocks are distributed below the Moho.
This high activity may be caused by the cold crust delaminated from the Kuril Arc side by the arc–arc collision, which prevents the thermal circulation and cools the forearc uppermost mantle to generate an environment more favorable for brittle fracture.

Related Results

Early Miocene Thrust Tectonics on Raukumara Peninsula, Northeastern New Zealand
Early Miocene Thrust Tectonics on Raukumara Peninsula, Northeastern New Zealand
<p>Raukumara Peninsula lies at the northeastern end of the East Coast Deformed Belt, a province of deformed Late Mesozoic-Late Cenozoic rocks on the eastern edges of the Nort...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Investigation of co-seismic stress and aftershock distribution along the Sumatra–Andaman subduction zone
Investigation of co-seismic stress and aftershock distribution along the Sumatra–Andaman subduction zone
AbstractThis study aimed to investigate co-seismic stress and aftershock distribution along the Sumatra–Andaman subduction zone (SASZ). The fault parameters of six major earthquake...
Investigation of co-seismic stress and aftershock distribution along the Sumatra-Andaman Subduction Zone
Investigation of co-seismic stress and aftershock distribution along the Sumatra-Andaman Subduction Zone
Abstract This study aimed to investigate co-seismic stress and aftershock distribution along the Sumatra-Andaman subduction zone (SASZ). The fault parameters of six major e...
Delamination‐wedge structure beneath the Hidaka Collision Zone, central Hokkaido, Japan inferred from seismic reflection profiling
Delamination‐wedge structure beneath the Hidaka Collision Zone, central Hokkaido, Japan inferred from seismic reflection profiling
In the Hidaka Collision Zone of Hokkaido, northern Japan, the Kuril island arc collides with the northeast Japan arc. In order to better understand the collision process, new high ...
The Relationship between Clustered-Aftershocks and 3D-Fault Models in Eastern Taiwan
The Relationship between Clustered-Aftershocks and 3D-Fault Models in Eastern Taiwan
The aftershock sequence typically consists of numerous seismic events, with their distribution exhibiting clustering characteristics. In geologically complex areas, such as the con...
Foreland basin systems
Foreland basin systems
A foreland basin system is defined as: (a) an elongate region of potential sediment accommodation that forms on continental crust between a contractional orogenic belt and the adja...

Back to Top