Javascript must be enabled to continue!
Rotating blade vibration parameter identification based on genetic algorithm
View through CrossRef
In this paper, aiming at the identification of blade vibration parameters such as constant speed synchronization, constant speed asynchronous, and variable speed synchronization, the simulation platform Simulink is used to model the blade vibration system, and the blade tip timing vibration measurement system model is constructed. A method of blade vibration parameter identification based on genetic algorithm is proposed, and numerical simulation and experimental verification are carried out. The results show that the parameter identification of blade vibration by genetic algorithm has high accuracy and strong anti-noise interference ability. The influence of key parameters on the identification of blade vibration parameters is studied. For the constant speed synchronous and constant speed asynchronous vibration of the blade, the angle between the sensors should not be an integral multiple of 2π as far as possible, and the larger DR (Distribution Range) value should be guaranteed. The higher the frequency doubling of blade vibration, the more sensors are needed. For the variable speed synchronous vibration of the blade, the frequency doubling is greater than the influence of the sensor layout on the parameter identification results, but the number of sensors is too small, which will seriously affect the identification accuracy of the frequency doubling. Aiming at the blade vibration test, a blade vibration tester is designed. The blade variable speed synchronous vibration test is carried out by using the strain gauge method and the tip timing method. The measurement results of the strain gauge method are basically consistent with the measurement results based on the genetic algorithm and the tip timing.
Title: Rotating blade vibration parameter identification based on genetic algorithm
Description:
In this paper, aiming at the identification of blade vibration parameters such as constant speed synchronization, constant speed asynchronous, and variable speed synchronization, the simulation platform Simulink is used to model the blade vibration system, and the blade tip timing vibration measurement system model is constructed.
A method of blade vibration parameter identification based on genetic algorithm is proposed, and numerical simulation and experimental verification are carried out.
The results show that the parameter identification of blade vibration by genetic algorithm has high accuracy and strong anti-noise interference ability.
The influence of key parameters on the identification of blade vibration parameters is studied.
For the constant speed synchronous and constant speed asynchronous vibration of the blade, the angle between the sensors should not be an integral multiple of 2π as far as possible, and the larger DR (Distribution Range) value should be guaranteed.
The higher the frequency doubling of blade vibration, the more sensors are needed.
For the variable speed synchronous vibration of the blade, the frequency doubling is greater than the influence of the sensor layout on the parameter identification results, but the number of sensors is too small, which will seriously affect the identification accuracy of the frequency doubling.
Aiming at the blade vibration test, a blade vibration tester is designed.
The blade variable speed synchronous vibration test is carried out by using the strain gauge method and the tip timing method.
The measurement results of the strain gauge method are basically consistent with the measurement results based on the genetic algorithm and the tip timing.
Related Results
Parameter identifications of synchronous vibration of rotating blades with large amplitude based on blade tip timing
Parameter identifications of synchronous vibration of rotating blades with large amplitude based on blade tip timing
Blade Tip Timing (BTT) is a promising method to measure the vibration of rotating blades by installing probes on the casing. The Zablotsky-Korostelev Single Parameter Technique (SP...
Discrete element parameter calibration and wear characteristics analysis of soil-rotary tillage blade in gneiss mountainous area
Discrete element parameter calibration and wear characteristics analysis of soil-rotary tillage blade in gneiss mountainous area
Abstract
Aiming at the problems of fast wear and short service life of rotary tillage blade in gneiss mountainous area, and the lack of accurate and reliable discrete eleme...
Numerical Investigation on the Rotating Stall Characteristics in a Three-Blade Centrifugal Impeller
Numerical Investigation on the Rotating Stall Characteristics in a Three-Blade Centrifugal Impeller
When a pump operates in part-load conditions, it is apt to form flow separations and even stall cells at the blade surfaces. In some conditions, stall cells may circumferentially p...
Investigation on aerodynamic interference mechanism of a contra-rotating propfan under take-off condition
Investigation on aerodynamic interference mechanism of a contra-rotating propfan under take-off condition
Abstract
Contra-rotating propfan (CRP) produce significant aerodynamic interference between the front and rear blades. The interaction effect of the front blade on t...
Influence of Tailored Boundary Layer Suction on Aerodynamic Performance in Bowed Compressor Cascades
Influence of Tailored Boundary Layer Suction on Aerodynamic Performance in Bowed Compressor Cascades
The impact of boundary layer suction on the aerodynamic performance of bowed compressor cascades is discussed in this paper. Preliminary studies are conducted in the context of a h...
Smart Active Vibration Control System of a Rotary Structure Using Piezoelectric Materials
Smart Active Vibration Control System of a Rotary Structure Using Piezoelectric Materials
A smart active vibration control (AVC) system containing piezoelectric (PZT) actuators, jointly with a linear quadratic regulator (LQR) controller, is proposed in this article to c...
Study on Coupled Mode Flutter Parameters of Large Wind Turbine Blades
Study on Coupled Mode Flutter Parameters of Large Wind Turbine Blades
Abstract
As the output power of wind turbines continues to increase, the blade size and flexibility increase. In actual operation, unpredictable airflow caused by natural c...
Investigation on Intelligent Rotor Vibration Control Based on Electromagnetic Damping Seal
Investigation on Intelligent Rotor Vibration Control Based on Electromagnetic Damping Seal
Higher energy level and more compact structure are the trend of centrifugal compressor, which may lead to the rotordynamics instability problems and high vibration. These problems ...

