Javascript must be enabled to continue!
Graphene-Based Materials for Supercapacitor
View through CrossRef
Graphene, a one-atomic-thick film of two-dimensional nanostructure, has piqued the attention of researchers due to its superior electrical conductivity, large surface area, good chemical stability, and excellent mechanical behaviour. These extraordinary properties make graphene an appropriate contender for energy storage applications. However, the agglomeration and re-stacking of graphene layers due to the enormous interlayer van der Waals attractions have severely hampered the performance of supercapacitors. Several strategies have been introduced to overcome the limitations and established graphene as an ideal candidate for supercapacitor. The combination of conducting polymer (CP) or metal oxide (MO) with graphene as electrode material is expected to boost the performance of supercapacitors. Recent reports on various CP/graphene composites and MO/graphene composites as supercapacitor electrode materials are summarised in this chapter, with a focus on the two basic supercapacitor mechanisms (EDLCs and pseudocapacitors).
Title: Graphene-Based Materials for Supercapacitor
Description:
Graphene, a one-atomic-thick film of two-dimensional nanostructure, has piqued the attention of researchers due to its superior electrical conductivity, large surface area, good chemical stability, and excellent mechanical behaviour.
These extraordinary properties make graphene an appropriate contender for energy storage applications.
However, the agglomeration and re-stacking of graphene layers due to the enormous interlayer van der Waals attractions have severely hampered the performance of supercapacitors.
Several strategies have been introduced to overcome the limitations and established graphene as an ideal candidate for supercapacitor.
The combination of conducting polymer (CP) or metal oxide (MO) with graphene as electrode material is expected to boost the performance of supercapacitors.
Recent reports on various CP/graphene composites and MO/graphene composites as supercapacitor electrode materials are summarised in this chapter, with a focus on the two basic supercapacitor mechanisms (EDLCs and pseudocapacitors).
Related Results
Review—Methods of Graphene Synthesis and Graphene-Based Electrode Material for Supercapacitor Applications
Review—Methods of Graphene Synthesis and Graphene-Based Electrode Material for Supercapacitor Applications
Energy is an unseen component of the world’s development and expansion. Energy storage, in addition to supplying energy from primary or secondary energy sources, such as renewables...
Preparation of Graphene Fibers
Preparation of Graphene Fibers
Graphene owns intriguing properties in electronic, thermal, and mechanic with unique two-dimension (2D) monolayer structure. The new member of carbon family has not only attracted ...
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical s...
3D graphene/fly ash waste material for hybrid supercapacitor electrode: specific capacitance analysis
3D graphene/fly ash waste material for hybrid supercapacitor electrode: specific capacitance analysis
AbstractThe performance of supercapacitor energy storage is depending on the type of the material that is used as supercapacitor electrode. Graphene has been widely used as the bas...
(Invited) Excellent Wetting Behavior of Yttria on 2D Materials
(Invited) Excellent Wetting Behavior of Yttria on 2D Materials
A high quality yttrium oxide (yttria, Y2O3) dielectric has been grown on different carbon derivatives materials (carbon nanotubes, exfoliated graphene, chemical vapor deposition gr...
Exploring defects and induced magnetism in epitaxial graphene films
Exploring defects and induced magnetism in epitaxial graphene films
Graphene has been demonstrated to have unique properties not only in its virgin state but also by altering its environment through rotations in bilayer graphene, doping, and creati...
In-Situ Hydrogen-Induced Defects on the Single Layer CVD Growth Graphene
In-Situ Hydrogen-Induced Defects on the Single Layer CVD Growth Graphene
In this paper we present in-situ hydrogen-induced defects on the single layer CVD growth graphene sheets with reactive terminated edges and holes within the graphene matrix. The sa...
Impact on Wrinkled Graphene
Impact on Wrinkled Graphene
Abstract
We investigated wrinkle-free single layer graphene and graphene with various wrinkles to examine their fracture toughness during an impact with a silver nan...

