Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Effects of irrigation and nitrogen fertilization on mitigating salt-induced Na+ toxicity and sustaining sea rice growth

View through CrossRef
Abstract This study investigated the effects of irrigation and nitrogen (N) fertilization on mitigating salt-induced Na+ toxicity and sustaining sea rice growth for perfecting irrigation and fertilization of sea rice. Three irrigation methods (submerged irrigation, intermittent irrigation, and controlled irrigation), three kinds of N fertilizers (urea, controlled release urea, and mixed N fertilizer), and control treatment without NaCl were set up in a pot experiment of sea rice with NaCl stress. The electrical conductivity in root layer soil of treatment with mixed N fertilizer and intermittent irrigation decreased slowly with the growth of rice and was significantly smaller than that of other treatments with NaCl. The Na+ content in sea rice of intermittent irrigation was the least, and that of submerged irrigation was significantly smaller than that of controlled irrigation, but the K+ and Ca2+ contents of three irrigation treatments were opposite to the Na+ content. The Na+ content of treatment with mixed N fertilizer and intermittent irrigation was the lowest, while the K+, Ca2+, and Mg2+ contents of mixed N fertilizer and intermittent irrigation were the highest in treatments with NaCl. The cell membrane permeability and malondialdehyde contents of rice leaves of mixed N fertilizer and intermittent irrigation were significantly smaller than those of other treatments with NaCl. The rice yield of mixed N fertilizer was significantly greater than that of urea and controlled release urea, and that of mixed N fertilizer and intermittent irrigation was increased by 104, 108, 277, 300, and 334% compared with mixed N fertilizer and submerged irrigation, urea and intermittent irrigation, urea and submerged irrigation, controlled release urea and intermittent irrigation, and controlled release urea and submerged irrigation, respectively. Therefore, the treatment of mixed N fertilizer and intermittent irrigation is worth recommending for being used for planting sea rice on coastal saline-sodic soil.
Title: Effects of irrigation and nitrogen fertilization on mitigating salt-induced Na+ toxicity and sustaining sea rice growth
Description:
Abstract This study investigated the effects of irrigation and nitrogen (N) fertilization on mitigating salt-induced Na+ toxicity and sustaining sea rice growth for perfecting irrigation and fertilization of sea rice.
Three irrigation methods (submerged irrigation, intermittent irrigation, and controlled irrigation), three kinds of N fertilizers (urea, controlled release urea, and mixed N fertilizer), and control treatment without NaCl were set up in a pot experiment of sea rice with NaCl stress.
The electrical conductivity in root layer soil of treatment with mixed N fertilizer and intermittent irrigation decreased slowly with the growth of rice and was significantly smaller than that of other treatments with NaCl.
The Na+ content in sea rice of intermittent irrigation was the least, and that of submerged irrigation was significantly smaller than that of controlled irrigation, but the K+ and Ca2+ contents of three irrigation treatments were opposite to the Na+ content.
The Na+ content of treatment with mixed N fertilizer and intermittent irrigation was the lowest, while the K+, Ca2+, and Mg2+ contents of mixed N fertilizer and intermittent irrigation were the highest in treatments with NaCl.
The cell membrane permeability and malondialdehyde contents of rice leaves of mixed N fertilizer and intermittent irrigation were significantly smaller than those of other treatments with NaCl.
The rice yield of mixed N fertilizer was significantly greater than that of urea and controlled release urea, and that of mixed N fertilizer and intermittent irrigation was increased by 104, 108, 277, 300, and 334% compared with mixed N fertilizer and submerged irrigation, urea and intermittent irrigation, urea and submerged irrigation, controlled release urea and intermittent irrigation, and controlled release urea and submerged irrigation, respectively.
Therefore, the treatment of mixed N fertilizer and intermittent irrigation is worth recommending for being used for planting sea rice on coastal saline-sodic soil.

Related Results

Effects of different irrigation patterns on paddy field environment and rice growth in non-water-retaining areas
Effects of different irrigation patterns on paddy field environment and rice growth in non-water-retaining areas
Abstract In order to find the optimal irrigation mode to balance the growth and development of rice and water-saving irrigation in paddy fields in non-water-retaining areas...
Effects of different tillage and fertilization methods on yield and nitrogen leaching
Effects of different tillage and fertilization methods on yield and nitrogen leaching
Conservation tillage and deep side-fertilization both hold the potential to reduce nitrogen leaching and improve grain yield and nitrogen use efficiency in fragrant rice cultivatio...
Effects of different fertilization practices on the N03-N, N, P, K, Ca, Mg, ash and dietary fibre contents of carrot
Effects of different fertilization practices on the N03-N, N, P, K, Ca, Mg, ash and dietary fibre contents of carrot
The effects of different fertilization practices on the NO3-N, N, P, K, Ca, Mg, ash and dietary fibre contents of carrots were studied in field experiments in southern Finland. Uni...
Extraction of Rice Bran Oil from Rice Bran by Supercritical Carbon Dioxide
Extraction of Rice Bran Oil from Rice Bran by Supercritical Carbon Dioxide
  Rice bran is an important source of nutrients that have many good bioactive compounds. This study examined the extraction of bran rice oil using supercritical carbon dioxide. Fr...
Thermal Anomalies Around Evolving Salt Sheets
Thermal Anomalies Around Evolving Salt Sheets
ABSTRACT The thermal conductivity of salt is about a factor three larger than that of sediments at sediment surface temperatures. The increase of sedimentary ther...

Back to Top