Javascript must be enabled to continue!
Biology, Status, and Management of the Yellowstone Cutthroat Trout
View through CrossRef
Abstract
Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri were historically distributed in the Yellowstone River drainage (Montana and Wyoming) and the Snake River drainage (Wyoming, Idaho, Utah, Nevada, and probably Washington). Individual populations evolved distinct life history characteristics in response to the diverse environments in which they were isolated after the last glaciation. Anthropogenic activities have resulted in a substantial decline (42% of the historical range is currently occupied; 28% is occupied by core [genetically unaltered] populations), but the number of extant populations, especially in headwater streams, has precluded listing of this taxon under the Endangered Species Act. Primary threats to persistence of Yellowstone cutthroat trout include (1) invasive species, resulting in hybridization, predation, disease, and interspecific competition; (2) habitat degradation from human activities such as agricultural practices, water diversions, grazing, dam construction, mineral extraction, grazing, timber harvest, and road construction; and (3) climate change, including an escalating risk of drought, wildfire, winter flooding, and rising temperatures. Extirpation of individual populations or assemblages has led to increasing isolation and fragmentation of remaining groups, which in turn raises susceptibility to the demographic influences of disturbance (both human and stochastic) and genetic factors. Primary conservation strategies include (1) preventing risks associated with invasive species by isolating populations of Yellowstone cutthroat trout and (2) connecting occupied habitats (where possible) to preserve metapopulation function and the expression of multiple life histories. Because persistence of isolated populations may be greater in the short term, current management is focused on isolating individual populations and restoring habitats; however, this approach implies that humans will act as dispersal agents if a population is extirpated because of stochastic events.
Received August 19, 2010; accepted April 28, 2011
Oxford University Press (OUP)
Title: Biology, Status, and Management of the Yellowstone Cutthroat Trout
Description:
Abstract
Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri were historically distributed in the Yellowstone River drainage (Montana and Wyoming) and the Snake River drainage (Wyoming, Idaho, Utah, Nevada, and probably Washington).
Individual populations evolved distinct life history characteristics in response to the diverse environments in which they were isolated after the last glaciation.
Anthropogenic activities have resulted in a substantial decline (42% of the historical range is currently occupied; 28% is occupied by core [genetically unaltered] populations), but the number of extant populations, especially in headwater streams, has precluded listing of this taxon under the Endangered Species Act.
Primary threats to persistence of Yellowstone cutthroat trout include (1) invasive species, resulting in hybridization, predation, disease, and interspecific competition; (2) habitat degradation from human activities such as agricultural practices, water diversions, grazing, dam construction, mineral extraction, grazing, timber harvest, and road construction; and (3) climate change, including an escalating risk of drought, wildfire, winter flooding, and rising temperatures.
Extirpation of individual populations or assemblages has led to increasing isolation and fragmentation of remaining groups, which in turn raises susceptibility to the demographic influences of disturbance (both human and stochastic) and genetic factors.
Primary conservation strategies include (1) preventing risks associated with invasive species by isolating populations of Yellowstone cutthroat trout and (2) connecting occupied habitats (where possible) to preserve metapopulation function and the expression of multiple life histories.
Because persistence of isolated populations may be greater in the short term, current management is focused on isolating individual populations and restoring habitats; however, this approach implies that humans will act as dispersal agents if a population is extirpated because of stochastic events.
Received August 19, 2010; accepted April 28, 2011.
Related Results
Values Associated with Management of Yellowstone Cutthroat Trout in Yellowstone National Park
Values Associated with Management of Yellowstone Cutthroat Trout in Yellowstone National Park
Recent emphasis on a holistic view of natural systems and their management is associated with a growing appreciation of the role of human values in these systems. In the past, reso...
Assessment of Spawning Fecundity and Its Relationship with Body Parameters of Rainbow Trout (Oncorhynchus mykiss) and Brown Trout (Salmo trutta fario)
Assessment of Spawning Fecundity and Its Relationship with Body Parameters of Rainbow Trout (Oncorhynchus mykiss) and Brown Trout (Salmo trutta fario)
The present investigations were carried out at Trout Culture Farm Laribal, Srinagar (J&K Govt.), India during December, 2020. Relationship between length-weight, spawning fecun...
Rainbow trout in the inlet tributaries of Lake Chinishibetsu, Shiretoko Peninsula
Rainbow trout in the inlet tributaries of Lake Chinishibetsu, Shiretoko Peninsula
AbstractRainbow trout, Oncorhynchusmykiss, is one of the most widely introduced fish species in the world, and its impacts on native fishes and ecosystems are of considerable conce...
Invasive Lake Trout Reproduction in Yellowstone Lake under an Active Suppression Program
Invasive Lake Trout Reproduction in Yellowstone Lake under an Active Suppression Program
AbstractIn Yellowstone Lake, predation by invasive Lake TroutSalvelinus namaycushhas caused significant abundance declines in native Yellowstone Cutthroat TroutOncorhynchus clarkii...
Thermal tolerance and metabolic physiology among redband trout populations in south‐eastern Oregon
Thermal tolerance and metabolic physiology among redband trout populations in south‐eastern Oregon
Streamside measurements of critical thermal maxima (Tcrit), swimming performance (Ucrit), and routine (Rr) and maximum (Rmax) metabolic rates were performed on three populations of...
Culture and Release of Eastern Brook Trout (Salvelinus fontinalis) in Catharpin Creek, Prince William County, Virginia
Culture and Release of Eastern Brook Trout (Salvelinus fontinalis) in Catharpin Creek, Prince William County, Virginia
<p>&#160;In 2014 a project of study began with the students from James Madison High School in Fairfax Virginia U.S.A, participating in Trout Out of the Classr...
Cellular analysis of B cell activation in the rainbow trout.
Cellular analysis of B cell activation in the rainbow trout.
Teleosts including the rainbow trout provide an interesting animal model, as they do not possess bone marrow or lymph node tissue. In trout, the anterior kidney is the main site fo...
Population dynamics of brown trout, Salmo trutta L., in a tributary in Brittany (France): spawning and juveniles
Population dynamics of brown trout, Salmo trutta L., in a tributary in Brittany (France): spawning and juveniles
The colonization by both resident and migrating spawner populations of brown trout and the characteristics of resident and migrating juveniles derived from the two populations have...

