Javascript must be enabled to continue!
Analysis of the Relationship between Vegetation and Radar Interferometric Coherence
View through CrossRef
To effectively reduce the impact of vegetation cover on surface settlement monitoring, the relationship between normalized difference vegetation index (NDVI) and coherence coefficient was established. It provides a way to estimate coherence coefficient by NDVI. In the research, a new method is tried to make the time range coincident between NDVI results and coherence coefficient results. Using the coherence coefficient results and the NDVI results of each interference image pair in the study area, the mathematical relationship between NDVI and the coherent coefficient was established based on statistical analysis of the fitting results of the exponential model, logarithmic model, and linear model. Four indicators were selected to evaluate the fitting results, including root mean square error, determinant coefficient, prediction interval coverage probability, and prediction interval normalized average width. The fitting effect of the exponential model was better than that of the logarithmic model and linear model. The mean of error was −0.041 in study area ROI1 and −0.126 in study area ROI2.The standard deviation of error was 0.165 in study area ROI1 and 0.140 in study area ROI2. The fitting results are consistent with the coherence coefficient results. The research method used the NDVI results to estimate the InSAR coherence coefficient. This provides an easy and efficient way to indirectly evaluate the interferometric coherence and a basis in InSAR data processing. The results can provide pre-estimation of coherence information in Ningxia by optical images.
Title: Analysis of the Relationship between Vegetation and Radar Interferometric Coherence
Description:
To effectively reduce the impact of vegetation cover on surface settlement monitoring, the relationship between normalized difference vegetation index (NDVI) and coherence coefficient was established.
It provides a way to estimate coherence coefficient by NDVI.
In the research, a new method is tried to make the time range coincident between NDVI results and coherence coefficient results.
Using the coherence coefficient results and the NDVI results of each interference image pair in the study area, the mathematical relationship between NDVI and the coherent coefficient was established based on statistical analysis of the fitting results of the exponential model, logarithmic model, and linear model.
Four indicators were selected to evaluate the fitting results, including root mean square error, determinant coefficient, prediction interval coverage probability, and prediction interval normalized average width.
The fitting effect of the exponential model was better than that of the logarithmic model and linear model.
The mean of error was −0.
041 in study area ROI1 and −0.
126 in study area ROI2.
The standard deviation of error was 0.
165 in study area ROI1 and 0.
140 in study area ROI2.
The fitting results are consistent with the coherence coefficient results.
The research method used the NDVI results to estimate the InSAR coherence coefficient.
This provides an easy and efficient way to indirectly evaluate the interferometric coherence and a basis in InSAR data processing.
The results can provide pre-estimation of coherence information in Ningxia by optical images.
Related Results
Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang
Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang
Time-series normalized difference vegetation index (NDVI) is commonly used to conduct vegetation dynamics, which is an important research topic. However, few studies have focused o...
A vegetation classi?cation and map: Guadalupe Mountains National Park
A vegetation classi?cation and map: Guadalupe Mountains National Park
A vegetation classi?cation and map for Guadalupe Mountains National Park (NP) is presented as part of the National Park Service Inventory & Monitoring - Vegetation Inventory Pr...
Realization and Prediction of Ecological Restoration Potential of Vegetation in Karst Areas
Realization and Prediction of Ecological Restoration Potential of Vegetation in Karst Areas
Based on the vegetation ecological quality index retrieved by satellite remote sensing in the karst areas of Guangxi in 2000–2019, the status of the ecological restoration of the v...
Differentiation characteristics of karst vegetation resilience and its response to climate and ecological restoration projects
Differentiation characteristics of karst vegetation resilience and its response to climate and ecological restoration projects
AbstractIn light of the recent pressure from global warming, extreme drought events, and deleterious human activity, the strength and long‐term change trends of vegetation in karst...
Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China
Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China
Abstract. Alpine meadow is one of the most widespread grassland types in the permafrost regions of the Qinghai-Tibet Plateau, and the transmission of coupled soil water heat is one...
The Firepond Long Range Imaging CO2 Laser Radar
The Firepond Long Range Imaging CO2 Laser Radar
The Massachusetts Institute of Technology Lincoln Laboratory has developed and tested the most advanced, high power, coherent CO2 laser radar ever built. The Firepond imaging laser...
Decoupling and partitioning the effect of climate and afforestation on long‐term vegetation greening in China since the 1990s
Decoupling and partitioning the effect of climate and afforestation on long‐term vegetation greening in China since the 1990s
AbstractVegetation is an essential component of the Earth's surface system, and is a clear indicator to global climate changes. Understanding the long‐term characteristics of veget...
Dynamic monitoring of vegetation coverage in weibei dry plateau based on remote sensing
Dynamic monitoring of vegetation coverage in weibei dry plateau based on remote sensing
Taking Fu County, a typical area of Weibei dry plateau, as the research object, the normalized difference vegetation index ( NDVI ) was calculated by using Landsat 8 OLI remote sen...

