Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Parallel collaborative planning for the coupled system of underground heavy-load robot

View through CrossRef
At present, designing and planning of robots are mainly based on path planning. This mode cannot meet requirements of real-time and precise planning for robots, especially under complex working conditions. Therefore, a parallel collaborative planning strategy is proposed in this paper, which parallel collaborates optimal task allocation planning and optimal local path planning. That is, according to real-time dynamic working environment of robots, the dynamic optimal task allocation planning strategy for coupled system of robot in low coupling state is adopted, to improve real-time working efficiency of underground heavy-load robot. Meanwhile, the parallel elite particle swarm optimization algorithm is adopted to improve accuracy of path tracking and controlling. Finally, the two planning strategies are collaborated parallel to realize intelligent and efficient planning of whole complex coupled system for underground heavy-load robot. The simulation and experiment results show that the parallel collaborative planning algorithm proposed in this paper has perfect controlling effects: Total flow of overall system is saved by 11.03 L, execution time saved by 16.8 s and implementation efficiency has been improved by 10 times. Therefore, the parallel collaborative planning strategy proposed in this paper can not only meet requirements of high efficiency and precision of intelligent robot under complex working conditions, but also greatly improve real-time working effectiveness and robustness of robots, so as to provide a reference for dynamic planning of complex intelligent engineering machinery, and also supply design basis for development of multi-robot collaborative system.
Title: Parallel collaborative planning for the coupled system of underground heavy-load robot
Description:
At present, designing and planning of robots are mainly based on path planning.
This mode cannot meet requirements of real-time and precise planning for robots, especially under complex working conditions.
Therefore, a parallel collaborative planning strategy is proposed in this paper, which parallel collaborates optimal task allocation planning and optimal local path planning.
That is, according to real-time dynamic working environment of robots, the dynamic optimal task allocation planning strategy for coupled system of robot in low coupling state is adopted, to improve real-time working efficiency of underground heavy-load robot.
Meanwhile, the parallel elite particle swarm optimization algorithm is adopted to improve accuracy of path tracking and controlling.
Finally, the two planning strategies are collaborated parallel to realize intelligent and efficient planning of whole complex coupled system for underground heavy-load robot.
The simulation and experiment results show that the parallel collaborative planning algorithm proposed in this paper has perfect controlling effects: Total flow of overall system is saved by 11.
03 L, execution time saved by 16.
8 s and implementation efficiency has been improved by 10 times.
Therefore, the parallel collaborative planning strategy proposed in this paper can not only meet requirements of high efficiency and precision of intelligent robot under complex working conditions, but also greatly improve real-time working effectiveness and robustness of robots, so as to provide a reference for dynamic planning of complex intelligent engineering machinery, and also supply design basis for development of multi-robot collaborative system.

Related Results

Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Phillip Noyce is one of Australia’s most prominent film makers—a successful feature film director with both iconic Australian narratives and many a Hollywood blockbuster under his ...
The robot null space : new uses for new robotic systems
The robot null space : new uses for new robotic systems
This doctoral thesis deals with the use of the robot redundancy to execute several tasks simultaneously at different levels of priority and its application to two different robotic...
Teori dan Praktik Kinematika Robot Lengan
Teori dan Praktik Kinematika Robot Lengan
Robot makin banyak diterapkan dalam dunia industri dan kehidupan sehari-hari. Robot dimanfaatkan untuk membantu pekerjaan manusia agar manusia dapat menyelesaikan pekerjaan lebih e...
Empowering Underground Laboratories Network Usage in the Baltic Sea Region
Empowering Underground Laboratories Network Usage in the Baltic Sea Region
<p>In the Baltic Sea region, there are world leading science organisations and industrial companies specialised in geophysics, geology and underground construction. T...
Rancang Bangun Kendali Robot Beroda menggunakan Sistem Android
Rancang Bangun Kendali Robot Beroda menggunakan Sistem Android
Robot merupakan salah satu bidang sedang banyak mendapatkan perhatian, tidak hanya di Indonesia tapi juga di dunia. Di Indonesia sendiri terdapat kontes robot yang sangat bergengsi...
RANCANG BANGUN ROBOT LINE FOLLOWER PEMADAM API MEMANFAATKAN FLAME SENSOR DAN BLUETOOTH BERBASIS ARDUINO
RANCANG BANGUN ROBOT LINE FOLLOWER PEMADAM API MEMANFAATKAN FLAME SENSOR DAN BLUETOOTH BERBASIS ARDUINO
Abstrak - Tujuan penelitian ini adalah membuat sistem monitoring ruangan yang berfungsi untuk memantau keberadaan api di dalam ruangan, dan membuat robot yang bisa  memadamkan api ...
Crane Load Moment System For Offshore Crane Operations
Crane Load Moment System For Offshore Crane Operations
Abstract History has shown that dependency upon the crane operator to monitor loads and boom angle or load radius do not allow the margin necessary to perform the...
Robot performance measurement and calibration using a 3D computer vision system
Robot performance measurement and calibration using a 3D computer vision system
SummaryPresent day robot systems are manufactured to perform within industry accepted tolerances. However, to use such systems for tasks requiring high precision, various methods o...

Back to Top