Javascript must be enabled to continue!
Phase of neuronal activity encodes 2-dimensional space in the human entorhinal cortex
View through CrossRef
AbstractThe entorhinal cortex plays a vital role in our spatial awareness. Much focus has been placed on the spatial activity of its individual neurons, which fire in a grid-like pattern across an environment1. On a population level, however, neurons in the entorhinal cortex also display coherent rhythmic activity known as local field potential. These local field oscillations have been shown to correlate with behavioural states but it remains unclear how these oscillations relate to spatial behaviour and the spatial firing pattern of individual neurons. To investigate this, we recorded entorhinal cortical neurons in the human brain during spatial memory tasks performed in virtual environments. We observed a spatial modulation of the phase of action potentials relative to the local field potentials. In addition, the spike phase modulation displayed correlation with the movement of the avatar, displayed discrete phase tuning at the cellular level, rotated phase between electrodes, and expressed spatially coherent phase maps that scaled with the virtual environment. Using surrogate data, we demonstrated that spike phase coherence is dependent on the spatial phase dynamics of gamma oscillations. We argue that the spatial coordination of spike generation with gamma rhythm underlies the emergence of grid cell activity in the entorhinal cortex. These results shed a new light on the intricate interlacing between the spiking activity of neurons and local field oscillations in the brain.
Cold Spring Harbor Laboratory
Title: Phase of neuronal activity encodes 2-dimensional space in the human entorhinal cortex
Description:
AbstractThe entorhinal cortex plays a vital role in our spatial awareness.
Much focus has been placed on the spatial activity of its individual neurons, which fire in a grid-like pattern across an environment1.
On a population level, however, neurons in the entorhinal cortex also display coherent rhythmic activity known as local field potential.
These local field oscillations have been shown to correlate with behavioural states but it remains unclear how these oscillations relate to spatial behaviour and the spatial firing pattern of individual neurons.
To investigate this, we recorded entorhinal cortical neurons in the human brain during spatial memory tasks performed in virtual environments.
We observed a spatial modulation of the phase of action potentials relative to the local field potentials.
In addition, the spike phase modulation displayed correlation with the movement of the avatar, displayed discrete phase tuning at the cellular level, rotated phase between electrodes, and expressed spatially coherent phase maps that scaled with the virtual environment.
Using surrogate data, we demonstrated that spike phase coherence is dependent on the spatial phase dynamics of gamma oscillations.
We argue that the spatial coordination of spike generation with gamma rhythm underlies the emergence of grid cell activity in the entorhinal cortex.
These results shed a new light on the intricate interlacing between the spiking activity of neurons and local field oscillations in the brain.
Related Results
The human entorhinal cortex: A cytoarchitectonic analysis
The human entorhinal cortex: A cytoarchitectonic analysis
AbstractThe entorhinal cortex of man is in the medial aspect of the temporal lobe. As in other mammalian species, it constitutes an essential component of the hippocampal formation...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract
The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Neuronal Activity Alters Neuron to OPC Synapses
Neuronal Activity Alters Neuron to OPC Synapses
AbstractThe mechanisms that drive the timing and specificity of oligodendrocyte myelination during development, or remyelination after injury or immune attack are not well understo...
Seditious Spaces
Seditious Spaces
The title ‘Seditious Spaces’ is derived from one aspect of Britain’s colonial legacy in Malaysia (formerly Malaya): the Sedition Act 1948. While colonial rule may seem like it was ...
Astrocytes improve neuronal health after cisplatin treatment through mitochondrial transfer
Astrocytes improve neuronal health after cisplatin treatment through mitochondrial transfer
AbstractNeurodegenerative disorders, including chemotherapy-induced cognitive impairment, are associated with neuronal mitochondrial dysfunction. Cisplatin, a commonly used chemoth...
Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections
Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections
AbstractPhysiological (intracortical microstimulation) and anatomical (transport of horseradish peroxidase conjugated to wheat germ agglutinin as shown by tetramethyl benzidine) ap...
Space Safety through situational awareness
Space Safety through situational awareness
Space Situational Awareness (SSA) entails the detection, tracking, and comprehension of spaceborne objects and phenomena that could potentially affect Earth or space operations. It...
Photometric properties of Ryugu and its artificial impact crater
Photometric properties of Ryugu and its artificial impact crater
Introduction:  The JAXA’s Hayabusa2 mission [1] rendezvoused with the Ryugu near Earth, C-type asteroid from June 2018 to November 2019, performing two touchdown...

