Javascript must be enabled to continue!
Cell reprogramming modelled as transitions in a hierarchy of cell cycles
View through CrossRef
We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz. cell cycles and cell lineages. Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown. This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles. Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations. Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching. The former corresponds to adirectedperturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.g., by a (stochastic) change in the cellular environment. These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings.
Title: Cell reprogramming modelled as transitions in a hierarchy of cell cycles
Description:
We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz.
cell cycles and cell lineages.
Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown.
This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles.
Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations.
Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching.
The former corresponds to adirectedperturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.
g.
, by a (stochastic) change in the cellular environment.
These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings.
Related Results
Expression level of the reprogramming factor NeuroD1 is critical for neuronal conversion efficiency from different cell types
Expression level of the reprogramming factor NeuroD1 is critical for neuronal conversion efficiency from different cell types
SummarySeveral transcription factors, including NeuroD1, have been shown to act as neuronal reprogramming factors (RFs) that induce neuronal conversion from somatic cells. However,...
S-Phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit
S-Phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit
Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, ce...
Chromatin states contribute to coordinated allelic transcriptional bursting to drive iPSC reprogramming
Chromatin states contribute to coordinated allelic transcriptional bursting to drive iPSC reprogramming
AbstractMolecular mechanisms behind the reprogramming of somatic cells to induced pluripotent stem cells (iPSC) remain poorly understood. While dynamic changes in gene expression a...
P-668 The LH endocrine profile in Gonadotropin-Releasing Hormone analogue cycles
P-668 The LH endocrine profile in Gonadotropin-Releasing Hormone analogue cycles
Abstract
Study question
What does the evolution of luteinizing hormone (LH) throughout the follicular phase look like in differe...
Identification of Chromatin Accessibility During The Early Stage of Pig SCNT Embryo Reprogramming by ATAC-Seq
Identification of Chromatin Accessibility During The Early Stage of Pig SCNT Embryo Reprogramming by ATAC-Seq
Abstract
Background: Somatic cell nuclear transplantation (SCNT) can transform highly differentiated donor nuclei into pluripotent nuclei through the large-scale reprogramm...
Murine melanoma cells incomplete reprogramming using non‐viral vector
Murine melanoma cells incomplete reprogramming using non‐viral vector
AbstractObjectivesThe reprogramming of cancer cells into induced pluripotent stem cells or less aggressive cancer cells can provide a modern platform to study cancer‐related genes ...
Glucose Metabolic Reprogramming in Colorectal Cancer: From Mechanisms to Targeted Therapy Approaches
Glucose Metabolic Reprogramming in Colorectal Cancer: From Mechanisms to Targeted Therapy Approaches
ABSTRACT
Background
Colorectal cancer (CRC) is one of the most common malignant tumors, and its morbidity ranks third amo...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...

