Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Quantum metamaterials: Applications in quantum information science

View through CrossRef
Metamaterials are a class of artificially engineered materials with periodic structures possessing exceptional properties not found in conventional materials. This definition can be extended when we introduce a degree of freedom by adding quantum elements such as quantum dots, cold atoms, Josephson junctions, and molecules, making metamaterials highly valuable for various quantum applications. Metamaterials have been used to achieve invisibility cloaking, super-resolution, energy harvesting, and sensing, among other applications. Most of these applications are performed in the classical regime. Metamaterials have gradually made their way into the quantum regime since the advent of quantum computing and quantum sensing and imaging. Quantum metamaterials are a relatively new technology, and their use in quantum information processing has proliferated. We restrict this study to quantum state manipulation and control, quantum entanglement, single photon generation, quantum state switching, quantum state engineering, quantum key distribution, quantum algorithms, orbital angular momentum, and quantum imaging. Considering these developments, we examine the theory, fabrication, and applications contributing to quantum information processing and how quantum metamaterials contribute to this field. We find that the ability to harness the unique properties of metamaterials to drive these applications is of great importance, as they have the potential to unlock new possibilities for revolutionizing quantum information processing, bringing the world closer to practical quantum technologies with unprecedented capabilities. We conclude by suggesting possible future research directions.
Title: Quantum metamaterials: Applications in quantum information science
Description:
Metamaterials are a class of artificially engineered materials with periodic structures possessing exceptional properties not found in conventional materials.
This definition can be extended when we introduce a degree of freedom by adding quantum elements such as quantum dots, cold atoms, Josephson junctions, and molecules, making metamaterials highly valuable for various quantum applications.
Metamaterials have been used to achieve invisibility cloaking, super-resolution, energy harvesting, and sensing, among other applications.
Most of these applications are performed in the classical regime.
Metamaterials have gradually made their way into the quantum regime since the advent of quantum computing and quantum sensing and imaging.
Quantum metamaterials are a relatively new technology, and their use in quantum information processing has proliferated.
We restrict this study to quantum state manipulation and control, quantum entanglement, single photon generation, quantum state switching, quantum state engineering, quantum key distribution, quantum algorithms, orbital angular momentum, and quantum imaging.
Considering these developments, we examine the theory, fabrication, and applications contributing to quantum information processing and how quantum metamaterials contribute to this field.
We find that the ability to harness the unique properties of metamaterials to drive these applications is of great importance, as they have the potential to unlock new possibilities for revolutionizing quantum information processing, bringing the world closer to practical quantum technologies with unprecedented capabilities.
We conclude by suggesting possible future research directions.

Related Results

Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
Graphene Multilayer Photonic Metamaterials: Fundamentals and Applications
Graphene Multilayer Photonic Metamaterials: Fundamentals and Applications
AbstractGraphene is given high expectation due to their unique properties and advantages and has revolutionized different research fields and leads to enormous applications. Howeve...
Safe energy-storage mechanical metamaterials via architecture design
Safe energy-storage mechanical metamaterials via architecture design
Mechanical and functional properties of metamaterials could be simultaneously manipulated via their architectures. This study proposes multifunctional metamaterials possessing both...
Divergent Design of Mechanical Metamaterials Clan Deducted from Arc-serpentine Curve
Divergent Design of Mechanical Metamaterials Clan Deducted from Arc-serpentine Curve
Abstract The exotic properties of mechanical metamaterials are determined by their unit-cells' structure and spatial arrangement, in analogy with the atoms of conventional ...

Back to Top