Javascript must be enabled to continue!
Microglia Phenotypes in Aging and Neurodegenerative Diseases
View through CrossRef
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer’s disease (AD), and Parkinson’s disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Title: Microglia Phenotypes in Aging and Neurodegenerative Diseases
Description:
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease.
Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation.
Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases.
While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory.
However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development.
This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer’s disease (AD), and Parkinson’s disease (PD).
The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples.
Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs.
Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Related Results
Induction of prostaglandin E2 synthesis and microsomal prostaglandin E synthase–1 expression in murine microglia by glioma-derived soluble factors
Induction of prostaglandin E2 synthesis and microsomal prostaglandin E synthase–1 expression in murine microglia by glioma-derived soluble factors
Object
Microglia are one of the members of monocyte/macrophage lineage in the central nervous system (CNS) and exist as ramified microglia in a normal resting state, but they are a...
<b>Extracellular cleavage of microglia-derived progranulin promotes diet-induced obesity</b>
<b>Extracellular cleavage of microglia-derived progranulin promotes diet-induced obesity</b>
<p dir="ltr"><b>ABSTRACT</b></p><p dir="ltr">Hypothalamic innate immune responses to dietary fats underpin the pathogenesis of obesity, in which micro...
<b>Extracellular cleavage of microglia-derived progranulin promotes diet-induced obesity</b>
<b>Extracellular cleavage of microglia-derived progranulin promotes diet-induced obesity</b>
<p dir="ltr"><b>ABSTRACT</b></p><p dir="ltr">Hypothalamic innate immune responses to dietary fats underpin the pathogenesis of obesity, in which micro...
Successful Aging
Successful Aging
The emerging concept of successful aging is based on evidence that in healthy individual when they get aged, there are considerable variations in physiological functions alteratio...
Successful Aging
Successful Aging
The emerging concept of successful aging is based on evidence that in healthy individual when they get aged, there are considerable variations in physiological functions alterati...
Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations
Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations
Background:Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but ...
NG2‐glia crosstalk with microglia in health and disease
NG2‐glia crosstalk with microglia in health and disease
AbstractNeurodegenerative diseases are increasingly becoming a global problem. However, the pathological mechanisms underlying neurodegenerative diseases are not fully understood. ...
Integrating human iPSC-derived macrophage progenitors into retinal organoids to generate a mature retinal microglial niche
Integrating human iPSC-derived macrophage progenitors into retinal organoids to generate a mature retinal microglial niche
AbstractIn the retina, microglia are resident immune cells that are essential for retinal development and function. Retinal microglia play a central role in mediating pathological ...

