Javascript must be enabled to continue!
Absorbing aerosols can strongly enhance extrem precipitation
View through CrossRef
Understanding the impact of anthropogenic aerosols on extreme precipitation is of both social and scientific significance. While anthropogenic absorbing aerosols are known to influence Earth's energy balance and atmospheric convection, their role in extreme events remains unclear. This study employs convective-resolving radiative-convective-equilibrium simulations to comprehensively investigate the impact of absorbing aerosols on extreme tropical precipitation. Our findings reveal an underappreciated mechanism whereby absorbing aerosols can, under certain conditions, significantly intensify extreme precipitation despite reducing the mean. Notably, we demonstrate that a mechanism previously observed in much warmer (hothouse) climates—where intense rainfall alternates with multi-day dry spells—can manifest under current realistic conditions due to the influence of absorbing aerosols. This mechanism operates when an aerosol perturbation shifts the lower tropospheric radiative heating rate to positive values, generating a strong inhibition layer. Our work underscores an additional potential effect of absorbing aerosols, with implications for climate change mitigation and disaster risk management.
Title: Absorbing aerosols can strongly enhance extrem precipitation
Description:
Understanding the impact of anthropogenic aerosols on extreme precipitation is of both social and scientific significance.
While anthropogenic absorbing aerosols are known to influence Earth's energy balance and atmospheric convection, their role in extreme events remains unclear.
This study employs convective-resolving radiative-convective-equilibrium simulations to comprehensively investigate the impact of absorbing aerosols on extreme tropical precipitation.
Our findings reveal an underappreciated mechanism whereby absorbing aerosols can, under certain conditions, significantly intensify extreme precipitation despite reducing the mean.
Notably, we demonstrate that a mechanism previously observed in much warmer (hothouse) climates—where intense rainfall alternates with multi-day dry spells—can manifest under current realistic conditions due to the influence of absorbing aerosols.
This mechanism operates when an aerosol perturbation shifts the lower tropospheric radiative heating rate to positive values, generating a strong inhibition layer.
Our work underscores an additional potential effect of absorbing aerosols, with implications for climate change mitigation and disaster risk management.
Related Results
Measurements of the total sugars in ambient aerosols by a phenol-sulfuric acid method
Measurements of the total sugars in ambient aerosols by a phenol-sulfuric acid method
Abstract
In order to characterize the composition of the water-soluble organic carbon (WSOC) in aerosols, the total sugars (TS) in the water-soluble fraction of the aerosol...
Climatic Effects of Hygroscopic Growth of Sulfate Aerosols in the Stratosphere
Climatic Effects of Hygroscopic Growth of Sulfate Aerosols in the Stratosphere
<p>Deliberate climate intervention by injection of sulfate aerosols in the stratosphere is a method proposed to counter anthropogenic climate warming. In such an inje...
Fire aerosols slow down the global water cycle
Fire aerosols slow down the global water cycle
<p>Fire is an important Earth system process and the largest source of global primary carbonaceous aerosols. Earlier studies have focused on the influence of fire aer...
Influence of Aerosols on Lightning Activities in Java Island, Indonesia
Influence of Aerosols on Lightning Activities in Java Island, Indonesia
Lightning is one of the natural disasters that cause significant financial losses and even fatalities. Therefore, it is necessary to understand the characteristics of lightning and...
Entropy‐based spatiotemporal patterns of precipitation regimes in the Huai River basin, China
Entropy‐based spatiotemporal patterns of precipitation regimes in the Huai River basin, China
ABSTRACTSpatiotemporal patterns of precipitation regimes in terms of precipitation amount and number of precipitation days at different time scales are investigated using the entro...
Aerosol impacts for convective parameterizations: Recent changes to the Grell-Freitas Convective Parameterization
Aerosol impacts for convective parameterizations: Recent changes to the Grell-Freitas Convective Parameterization
<p>The Grell-Freitas (GF) cumulus parameterization is an aerosol-aware, scale-aware convective parameterization. This presentation will focus one of the several devel...
INFLUENCE OF ATMOSPHERIC PRECIPITATIONS ON THE RUN OF THE PUTIL RIVER
INFLUENCE OF ATMOSPHERIC PRECIPITATIONS ON THE RUN OF THE PUTIL RIVER
Research of precipitation, water balance of river basins, and the impact of precipitation on river runoff remain relevant in the context of global and regional climate change. Nowa...
Evaluation and Comparison of the GWR Merged Precipitation and Multi-Source Weighted-Ensemble Precipitation based on High-density Gauge Measurement.
Evaluation and Comparison of the GWR Merged Precipitation and Multi-Source Weighted-Ensemble Precipitation based on High-density Gauge Measurement.
Accurate estimation of precipitation in both space and time is essential
for hydrological research. We compared multi-source weighted ensemble
precipitation (MSWEP) with multi-sour...

