Javascript must be enabled to continue!
Immunomodulatory effect of mesenchymal stem cells
View through CrossRef
Mesenchymal stem cells represent an adult population of nonhematopoietic cells, which can differentiate into a variety of cell types such as osteocytes, chondrocytes, adipocytes, and myocytes. They display immunomodulatory properties that have led to the consideration of their use for the inhibition of immune responses. In this context, mesenchymal stem cells efficiently inhibit maturation, cytokine production, and the T cell stimulatory capacity of dendritic cells. They also can impair proliferation, cytokine secretion, and cytotoxic potential of T lymphocytes. Moreover, mesenchymal stem cells are able to inhibit the differentiation of B cells to plasma cells by inhibiting their capacity to produce antibodies. A variety of animal models confirm the immunomodulatory properties of mesenchymal stem cells. Clinical studies including patients with severe acute graft-versus-host disease have revealed that the administration of mesenchymal stem cells results in significant clinical responses. Therefore, mesenchymal stem cells improve acute graft-versus-host disease and represent a promising candidate for the prevention and treatment of immune-mediated diseases, due to their immunomodulatory capability and their low immunogenicity.
FapUNIFESP (SciELO)
Title: Immunomodulatory effect of mesenchymal stem cells
Description:
Mesenchymal stem cells represent an adult population of nonhematopoietic cells, which can differentiate into a variety of cell types such as osteocytes, chondrocytes, adipocytes, and myocytes.
They display immunomodulatory properties that have led to the consideration of their use for the inhibition of immune responses.
In this context, mesenchymal stem cells efficiently inhibit maturation, cytokine production, and the T cell stimulatory capacity of dendritic cells.
They also can impair proliferation, cytokine secretion, and cytotoxic potential of T lymphocytes.
Moreover, mesenchymal stem cells are able to inhibit the differentiation of B cells to plasma cells by inhibiting their capacity to produce antibodies.
A variety of animal models confirm the immunomodulatory properties of mesenchymal stem cells.
Clinical studies including patients with severe acute graft-versus-host disease have revealed that the administration of mesenchymal stem cells results in significant clinical responses.
Therefore, mesenchymal stem cells improve acute graft-versus-host disease and represent a promising candidate for the prevention and treatment of immune-mediated diseases, due to their immunomodulatory capability and their low immunogenicity.
Related Results
Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
Differential marker expression by cultures rich in mesenchymal stem cells
Differential marker expression by cultures rich in mesenchymal stem cells
AbstractBackgroundMesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires...
O-065 The naughty cells of the endometriumxx
O-065 The naughty cells of the endometriumxx
Abstract
Stem/progenitor cells are the naughty cells of the endometrium! The term “naughty” has a number of connotations, one being immaturity which I will apply to ...
Alginate-Gelatin Microspheres Protect Human Mesenchymal Stem Cells During Deep Cryopreservation
Alginate-Gelatin Microspheres Protect Human Mesenchymal Stem Cells During Deep Cryopreservation
Background: The need for on-demand biological products has been raised during the last decades. To prepare ready-to-use organ-related products, it necessitates a bulk cell reservoi...
The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness
The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness
Abstract
Hematopoietic cells are arranged in a hierarchy where stem and progenitor cells differentiate into mature blood cells. Likewise, AML (Acute Myeloid Leukemia...
Optimal structure of heterogeneous stem cell niche: The importance of cell migration in delaying tumorigenesis
Optimal structure of heterogeneous stem cell niche: The importance of cell migration in delaying tumorigenesis
AbstractStudying the stem cell niche architecture is a crucial step for investigating the process of oncogenesis and obtaining an effective stem cell therapy for various cancers. R...
The role of PRX1-expressing cells in periodontal regeneration and wound healing
The role of PRX1-expressing cells in periodontal regeneration and wound healing
The ideal outcome of wound healing is the complete restoration of the structure and function of the original tissue. Stem cells are one of the key factors in this process. Currentl...
CXCL12 Production by Early Mesenchymal Progenitors Is Required for Hematopoietic Stem Cell Maintenance
CXCL12 Production by Early Mesenchymal Progenitors Is Required for Hematopoietic Stem Cell Maintenance
Abstract
Abstract 510
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in the bone marrow that provides key signals required f...

