Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The interplay between Hebbian and homeostatic synaptic plasticity

View through CrossRef
Synaptic plasticity, a change in the efficacy of synaptic signaling, is a key property of synaptic communication that is vital to many brain functions. Hebbian forms of long-lasting synaptic plasticity—long-term potentiation (LTP) and long-term depression (LTD)—have been well studied and are considered to be the cellular basis for particular types of memory. Recently, homeostatic synaptic plasticity, a compensatory form of synaptic strength change, has attracted attention as a cellular mechanism that counteracts changes brought about by LTP and LTD to help stabilize neuronal network activity. New findings on the cellular mechanisms and molecular players of the two forms of plasticity are uncovering the interplay between them in individual neurons.
Title: The interplay between Hebbian and homeostatic synaptic plasticity
Description:
Synaptic plasticity, a change in the efficacy of synaptic signaling, is a key property of synaptic communication that is vital to many brain functions.
Hebbian forms of long-lasting synaptic plasticity—long-term potentiation (LTP) and long-term depression (LTD)—have been well studied and are considered to be the cellular basis for particular types of memory.
Recently, homeostatic synaptic plasticity, a compensatory form of synaptic strength change, has attracted attention as a cellular mechanism that counteracts changes brought about by LTP and LTD to help stabilize neuronal network activity.
New findings on the cellular mechanisms and molecular players of the two forms of plasticity are uncovering the interplay between them in individual neurons.

Related Results

A postsynaptic signaling system for the regulation of homeostatic synaptic plasticity
A postsynaptic signaling system for the regulation of homeostatic synaptic plasticity
<p>Synapses undergo many stresses and plastic changes throughout the life of an organism. Homeostatic mechanisms respond to these stresses and maintain synaptic activity with...
Non-synaptic plasticity enables memory-dependent local learning
Non-synaptic plasticity enables memory-dependent local learning
AbstractSynaptic plasticity is essential for memory formation and learning in the brain. In addition, recent results indicate that non-synaptic plasticity processes such as the reg...
The reversibility and limits of homeostatic synaptic plasticity
The reversibility and limits of homeostatic synaptic plasticity
<p>To experience the world, we depend on the ability of our brains to process information. Problems can occur when communication between neurons is not regulated, and a signi...
Synaptic Integration
Synaptic Integration
Abstract Neurons in the brain receive thousands of synaptic inputs from other neurons. Synaptic integration is the term used to describe how neu...
Non-synaptic plasticity enables memory-dependent local learning
Non-synaptic plasticity enables memory-dependent local learning
Synaptic plasticity is essential for memory formation and learning in the brain. In addition, recent results indicate that non-synaptic plasticity processes such as the regulation ...
A screen for genes that regulate synaptic growth reveals mechanisms that stabilize synaptic strength
A screen for genes that regulate synaptic growth reveals mechanisms that stabilize synaptic strength
ABSTRACTSynapses grow, prune, and remodel throughout development, experience, and disease. This structural plasticity can destabilize information transfer in the nervous system. Ho...
Cdc42 activation is necessary for heterosynaptic cooperation and competition
Cdc42 activation is necessary for heterosynaptic cooperation and competition
AbstractSynapses change their weights in response to neuronal activity and in turn, neuronal networks alter their response properties and ultimately allow the brain to store inform...
Mechanisms of GABAergic Homeostatic Plasticity
Mechanisms of GABAergic Homeostatic Plasticity
Homeostatic plasticity ensures that appropriate levels of activity are maintained through compensatory adjustments in synaptic strength and cellular excitability. For instance, exc...

Back to Top