Javascript must be enabled to continue!
The association of prokaryotic antiviral systems and symbiotic phage communities in drinking water microbiomes
View through CrossRef
Abstract
Prokaryotic antiviral systems are important mediators for prokaryote-phage interactions, which have significant implications for the survival of prokaryotic community. However, the prokaryotic antiviral systems under environmental stress are poorly understood, limiting the understanding of microbial adaptability. Here, we systematically investigated the profile of the prokaryotic antiviral systems at the community level and prokaryote-phage interactions in the drinking water microbiome. Chlorine disinfectant was revealed as the main ecological driver for the difference in prokaryotic antiviral systems and prokaryote-phage interactions. Specifically, the prokaryotic antiviral systems in the microbiome exhibited a higher abundance, broader antiviral spectrum, and lower metabolic burden under disinfectant stress. Moreover, significant positive correlations were observed between phage lysogenicity and enrichment of antiviral systems (e.g., Type IIG and IV restriction-modification (RM) systems, and Type II CRISPR-Cas system) in the presence of disinfection, indicating these antiviral systems might be more compatible with lysogenic phages and prophages. Accordingly, there was a stronger prokaryote-phage symbiosis in disinfected microbiome, and the symbiotic phages carried more auxiliary metabolic genes (AMGs) related to prokaryotic adaptability as well as antiviral systems, which might further enhance prokaryote survival in drinking water distribution systems. Overall, this study demonstrates that the prokaryotic antiviral systems had a close association with their symbiotic phages, which provides novel insights into prokaryote-phage interactions and microbial environmental adaptation.
Oxford University Press (OUP)
Title: The association of prokaryotic antiviral systems and symbiotic phage communities in drinking water microbiomes
Description:
Abstract
Prokaryotic antiviral systems are important mediators for prokaryote-phage interactions, which have significant implications for the survival of prokaryotic community.
However, the prokaryotic antiviral systems under environmental stress are poorly understood, limiting the understanding of microbial adaptability.
Here, we systematically investigated the profile of the prokaryotic antiviral systems at the community level and prokaryote-phage interactions in the drinking water microbiome.
Chlorine disinfectant was revealed as the main ecological driver for the difference in prokaryotic antiviral systems and prokaryote-phage interactions.
Specifically, the prokaryotic antiviral systems in the microbiome exhibited a higher abundance, broader antiviral spectrum, and lower metabolic burden under disinfectant stress.
Moreover, significant positive correlations were observed between phage lysogenicity and enrichment of antiviral systems (e.
g.
, Type IIG and IV restriction-modification (RM) systems, and Type II CRISPR-Cas system) in the presence of disinfection, indicating these antiviral systems might be more compatible with lysogenic phages and prophages.
Accordingly, there was a stronger prokaryote-phage symbiosis in disinfected microbiome, and the symbiotic phages carried more auxiliary metabolic genes (AMGs) related to prokaryotic adaptability as well as antiviral systems, which might further enhance prokaryote survival in drinking water distribution systems.
Overall, this study demonstrates that the prokaryotic antiviral systems had a close association with their symbiotic phages, which provides novel insights into prokaryote-phage interactions and microbial environmental adaptation.
Related Results
Lysogeny destabilizes computationally simulated microbiomes
Lysogeny destabilizes computationally simulated microbiomes
AbstractBackgroundThe Anna Karenina Principle predicts that stability in host-associated microbiomes correlates with health in the host. Microbiomes are ecosystems, and classical e...
Use of Formation Water and Associated Gases and their Simultaneous Utilization for Obtaining Microelement Concentrates Fresh Water and Drinking Water
Use of Formation Water and Associated Gases and their Simultaneous Utilization for Obtaining Microelement Concentrates Fresh Water and Drinking Water
Abstract Purpose: The invention relates to the oil industry, inorganic chemistry, in particular, to the methods of complex processing of formation water, using flare gas of oil and...
Microbial Community Structure and Diversity in Drinking Water Supply, Distribution Systems as Well as Household Point of Use Site in Addis Ababa City, Ethiopia
Microbial Community Structure and Diversity in Drinking Water Supply, Distribution Systems as Well as Household Point of Use Site in Addis Ababa City, Ethiopia
Abstract
BackgroundUnderstanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Despite culti...
Microbial Community Structure and Diversity in Drinking Water Supply, Distribution Systems as well as Household Point of use Site in Addis Ababa City, Ethiopia
Microbial Community Structure and Diversity in Drinking Water Supply, Distribution Systems as well as Household Point of use Site in Addis Ababa City, Ethiopia
Abstract
Understanding ecology of microbiomes in drinking water distribution systems is the most important notion in delivering safe drinking water. Despite cultivation-bas...
What makes a temperate phage an effective bacterial weapon?
What makes a temperate phage an effective bacterial weapon?
AbstractTemperate bacteriophages (phages) are common features of bacterial genomes and can act as self-amplifying biological weapons, killing susceptible competitors and thus incre...
Immune-oncology-microbiome axis may result in AKP or anti-AKP effects in intratumor microbiomes
Immune-oncology-microbiome axis may result in AKP or anti-AKP effects in intratumor microbiomes
AbstractAn emerging consensus regarding the triangle relationship between tumor, immune cells, and microbiomes is the immune-oncology-microbiome (IOM) axis, which stipulates that m...
Machine Learning to Access and Ensure Safe Drinking Water Supply: A Systematic Review
Machine Learning to Access and Ensure Safe Drinking Water Supply: A Systematic Review
Drinking water is essential to public health and socioeconomic growth. Therefore, assessing and ensuring drinking water supply is a critical task in modern society. Conventional ap...
Epidemiological and evolutionary consequences of CRISPR-Cas reactivity
Epidemiological and evolutionary consequences of CRISPR-Cas reactivity
AbstractAdaptive immune systems face a control challenge: they should react with enough strength to clear an infection while avoiding to harm their organism. CRISPR-Cas systems are...

