Javascript must be enabled to continue!
Implementasi Big Data Analytical Untuk Perguruan Tinggi Menggunakan Machine Learning
View through CrossRef
The dynamics of higher education are changing and emphasize the need to adapt quickly. Higher education is under the supervision of accreditation agencies, governments and other stakeholders to seek new ways to improve and monitor student success and other institutional policies. Many agencies fail to make efficient use of the large amounts of available data. With the use of big data analytics in higher education, it can be obtained more insight into students, academics, and the process in higher education so that it supports predictive analysis and improves decision making. The purpose of this research is to implement big data analytical to increase the decision making of the competent party. This research begins with the identification of process data based on analytical learning, academic and process in the campus environment. The data used in this study is a public dataset from UCI machine learning, from the 33 available varibales, 4 varibales are used to measure student performance. Big data analysis in this study uses spark apace as a library to operate pyspark so that python can process big data analysis. The data already in the master slave is grouped using k-mean clustering to get the best performing student group. The results of this study succeeded in grouping students into 5 clusters, cluster 1 including the best student performance and cluster 5 including the lowest student performance
Universitas Bhayangkara Jakarta Raya
Title: Implementasi Big Data Analytical Untuk Perguruan Tinggi Menggunakan Machine Learning
Description:
The dynamics of higher education are changing and emphasize the need to adapt quickly.
Higher education is under the supervision of accreditation agencies, governments and other stakeholders to seek new ways to improve and monitor student success and other institutional policies.
Many agencies fail to make efficient use of the large amounts of available data.
With the use of big data analytics in higher education, it can be obtained more insight into students, academics, and the process in higher education so that it supports predictive analysis and improves decision making.
The purpose of this research is to implement big data analytical to increase the decision making of the competent party.
This research begins with the identification of process data based on analytical learning, academic and process in the campus environment.
The data used in this study is a public dataset from UCI machine learning, from the 33 available varibales, 4 varibales are used to measure student performance.
Big data analysis in this study uses spark apace as a library to operate pyspark so that python can process big data analysis.
The data already in the master slave is grouped using k-mean clustering to get the best performing student group.
The results of this study succeeded in grouping students into 5 clusters, cluster 1 including the best student performance and cluster 5 including the lowest student performance.
Related Results
Faktor Determinan yang Mempengaruhi Minat Siswa dalam Melanjutkan Studi ke Perguruan Tinggi
Faktor Determinan yang Mempengaruhi Minat Siswa dalam Melanjutkan Studi ke Perguruan Tinggi
Background: Students' interest in continuing their studies at university is influenced by several determinant factors. Based on several previous studies, the results showed that th...
Sistem Akreditasi Pemantauan dan Relevansinya Bagi Sekolah Tinggi Teologi dan Sekolah Tinggi Agama Kristen
Sistem Akreditasi Pemantauan dan Relevansinya Bagi Sekolah Tinggi Teologi dan Sekolah Tinggi Agama Kristen
Abstract. Accreditation is an assessment activity in accordance with established criteria based on the National Higher Education Standards. The legal basis for the monitoring accre...
PENINGKATAN MOTIVASI SISWA UNTUK MELANJUTKAN KE PERGURUAN TINGGI
PENINGKATAN MOTIVASI SISWA UNTUK MELANJUTKAN KE PERGURUAN TINGGI
Melanjutkan pendidikan ke perguruan tiggi merupakan salah satu cara untuk meningkatkan taraf hidup. Angka Partisipasi Kasar (APK) perguruan tinggi di Indonesia masih rendah, dengan...
PENGARUH TACIT KNOWLEDGE DAN TECHNOLOGICAL CAPABILITY DENGAN MEDIASI INNOVATION BEHAVIOR TERHADAP KINERJA KARYAWAN PERGURUAN TINGGI
PENGARUH TACIT KNOWLEDGE DAN TECHNOLOGICAL CAPABILITY DENGAN MEDIASI INNOVATION BEHAVIOR TERHADAP KINERJA KARYAWAN PERGURUAN TINGGI
Perguruan tinggi ialah suatu pendidikan tertinggi yang memiliki tanggung jawab untuk menyedikan sumber daya manusia di Negara Indonesia yang memiliki kemampuan dan keprabadian yang...
IMPLEMENTASI WASATHIYAH MELALUI PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI PERGURUAN TINGGI UMUM
IMPLEMENTASI WASATHIYAH MELALUI PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI PERGURUAN TINGGI UMUM
Mahasiswa dalam perguruan tinggi umum memiliki latar belakang pendidikan agama yang tekstual sehingga akan mudah dipengaruhi oleh hal-hal baru. Hal inilah yang mendasari begitu pen...
Digital Footprint as a Source of Big Data in Education
Digital Footprint as a Source of Big Data in Education
The purpose of this study is to consider the prospects and problems of using big data in education.Materials and methods. The research methods include analysis, systematization and...
PENGARUH MOTIVASI, PERSEPSI DAN PROMOSI TERHADAP KEPUTUSAN MAHASISWAMEMILIH STIE PASAMAN SIMPANG EMPAT
PENGARUH MOTIVASI, PERSEPSI DAN PROMOSI TERHADAP KEPUTUSAN MAHASISWAMEMILIH STIE PASAMAN SIMPANG EMPAT
Perguruan Tinggi memainkan peranan penting didalam mencetak sumber daya manusia (SDM) yang berkualitas. Bertolak dari peran strategisnya itu sejumlah Perguruan Tinggi seakan berlom...
Peran dan Kontribusi Dosen dalam Akreditasi Perguruan Tinggi dan Program Studi
Peran dan Kontribusi Dosen dalam Akreditasi Perguruan Tinggi dan Program Studi
Penelitian tentang peran dan kontribusi dosen dalam akreditasi perguruan tinggi dan program studi sangat penting untuk dilakukan hal ini berkenaan dengan keberlanjutan sebuah inst...

