Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Effects of AlGaN layer parameter on ultraviolet response of n+-GaN/i-AlxGa1-xN/n+-GaN structure ultraviolet-infrared photodetector

View through CrossRef
We have investigated the effect of AlGaN layer parameter on the ultraviolet response of n+-GaN/i-AlxGa1-xN/n+-GaN structure ultraviolet-infrared photodetector and its physical mechanism. Through the simulation, it is found that the decrease of AlGaN background concentration has a positive effect on device’s ultraviolet quantum efficiency. When AlGaN layer background concentration cannot be reduced, the decrease of its thickness can ensure the efficiency. Besides, interfical state should be minimized during materials growth and device fabrication. In addition, small reverse bias voltage can greatly increase ultraviolet quantum efficiency. All these phenomena may be mainly attributed to the existence of the back-to-back heterojunction and the opposite electrical field. It is suggested that we need to adjust structural parameters to obtain high quantum efficiency according to the materials quality in device design.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Effects of AlGaN layer parameter on ultraviolet response of n+-GaN/i-AlxGa1-xN/n+-GaN structure ultraviolet-infrared photodetector
Description:
We have investigated the effect of AlGaN layer parameter on the ultraviolet response of n+-GaN/i-AlxGa1-xN/n+-GaN structure ultraviolet-infrared photodetector and its physical mechanism.
Through the simulation, it is found that the decrease of AlGaN background concentration has a positive effect on device’s ultraviolet quantum efficiency.
When AlGaN layer background concentration cannot be reduced, the decrease of its thickness can ensure the efficiency.
Besides, interfical state should be minimized during materials growth and device fabrication.
In addition, small reverse bias voltage can greatly increase ultraviolet quantum efficiency.
All these phenomena may be mainly attributed to the existence of the back-to-back heterojunction and the opposite electrical field.
It is suggested that we need to adjust structural parameters to obtain high quantum efficiency according to the materials quality in device design.

Related Results

Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN g...
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Systematic studies were performed on the influence of different cap layers of i-GaN, n-GaN, p-GaN and InGaN on AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on sapphi...
Carrier Localization at Atomic‐Scale Compositional Fluctuations in Single AlGaN Nanowires with Nano‐Cathodoluminescence
Carrier Localization at Atomic‐Scale Compositional Fluctuations in Single AlGaN Nanowires with Nano‐Cathodoluminescence
Considerable interest has been generated to develop highly efficient deep ultraviolet (DUV) emitters using AlGaN‐based alloys with direct bandgaps between 3.4 – 6.1 eV for a broad ...
Effects of interface states and temperature on the C-V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors
Effects of interface states and temperature on the C-V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors
The impact of states at the insulator/AlGaN interface on the capacitance-voltage (C-V) characteristics of a metal/insulator/AlGaN/GaN heterostructure (MISH) capacitor was examined ...
Advanced AlGaN/GaN HEMT technology, design, fabrication and characterization
Advanced AlGaN/GaN HEMT technology, design, fabrication and characterization
Nowadays, the microelectronics technology is based on the mature and very well established silicon (Si) technology. However, Si exhibits some important limitations regarding its vo...
Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes
Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes
AbstractWe report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temp...
Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer
Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer
Semi-insulating (SI) GaN layers were grown on 4H-SiC substrates by inserting an AlGaN layer between the AlN buffer and the GaN layer. Secondary ion mass spectroscopy measurements s...
Base Transit Time in Abrupt GaN/InGaN/GaN and AlGaN/GaN/AlGaN HBTs
Base Transit Time in Abrupt GaN/InGaN/GaN and AlGaN/GaN/AlGaN HBTs
AbstractBase transit time, τb, in abrupt npn GaN/InGaN/GaN and AlGaN/GaN/AlGaN double heterojunction bipolar transistors (DHBTs) is reported. Base transit time strongly depends not...

Back to Top