Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Sediment controls on the transition from debris flow to fluvial channels in steep mountain ranges

View through CrossRef
Steep channel networks commonly show a transition from constant-gradient colluvial channels associated with debris flow activity and concave-fluvial channels downstream. The trade-off between debris flow and fluvial erosion in steep channels remains unclear, which obscures connections among topography, tectonics, and climate in steep landscapes. We analyzed steep debris-flow-prone channels across the western US and observe: 1) similar maximum channel gradients across a range of catchment erosion rates and geologic settings; and 2) lengthening colluvial channels with increases in sediment grain size. The correspondence between sediment grain size and colluvial channel length led us to test a hypothesis that steep channel gradients are controlled by thresholds of motion for mass-wasting failure of channel bed sediment and thresholds of sediment motion by fluvial entrainment. We calculated discharges needed to mobilize sediment by both mechanisms across channel networks in the San Gabriel Mountains (SGM) and northern San Jacinto Mountains in southern California (NSJM). Across steep colluvial channels in both landscapes, sediment is more likely to be mobilized by mass-wasting processes, which are less-sensitive to sediment grain size, in agreement with observations from imagery bracketing storms. Discharges with decadal recurrences are below fluvial entrainment thresholds but above mass-wasting entrainment thresholds for D50 (median) sediment sizes in colluvial channels. In lower-gradient concave channels downstream, discharges in decadal storms exceed fluvial entrainment thresholds but are lower than mass-wasting entrainment thresholds for D50-sized sediment. In both landscapes, fluvial channels progressively steepen downstream compared to gradients needed to mobilize sediment cover, which we interpret to reflect downstream increases in sediment flux. Coarser sediment supply in the NSJM than the SGM increases threshold discharges needed to mobilize sediment by fluvial entrainment, which increases total channel relief in the NSJM by (1) extending colluvial channels shaped by debris flows and (2) increasing fluvial channel gradients. Together, our analyses show how differing sensitivity of fluvial and debris flow processes to sediment grain size impacts the partitioning of colluvial and fluvial regimes in headwater channel networks.
Title: Sediment controls on the transition from debris flow to fluvial channels in steep mountain ranges
Description:
Steep channel networks commonly show a transition from constant-gradient colluvial channels associated with debris flow activity and concave-fluvial channels downstream.
The trade-off between debris flow and fluvial erosion in steep channels remains unclear, which obscures connections among topography, tectonics, and climate in steep landscapes.
We analyzed steep debris-flow-prone channels across the western US and observe: 1) similar maximum channel gradients across a range of catchment erosion rates and geologic settings; and 2) lengthening colluvial channels with increases in sediment grain size.
The correspondence between sediment grain size and colluvial channel length led us to test a hypothesis that steep channel gradients are controlled by thresholds of motion for mass-wasting failure of channel bed sediment and thresholds of sediment motion by fluvial entrainment.
We calculated discharges needed to mobilize sediment by both mechanisms across channel networks in the San Gabriel Mountains (SGM) and northern San Jacinto Mountains in southern California (NSJM).
Across steep colluvial channels in both landscapes, sediment is more likely to be mobilized by mass-wasting processes, which are less-sensitive to sediment grain size, in agreement with observations from imagery bracketing storms.
Discharges with decadal recurrences are below fluvial entrainment thresholds but above mass-wasting entrainment thresholds for D50 (median) sediment sizes in colluvial channels.
In lower-gradient concave channels downstream, discharges in decadal storms exceed fluvial entrainment thresholds but are lower than mass-wasting entrainment thresholds for D50-sized sediment.
In both landscapes, fluvial channels progressively steepen downstream compared to gradients needed to mobilize sediment cover, which we interpret to reflect downstream increases in sediment flux.
Coarser sediment supply in the NSJM than the SGM increases threshold discharges needed to mobilize sediment by fluvial entrainment, which increases total channel relief in the NSJM by (1) extending colluvial channels shaped by debris flows and (2) increasing fluvial channel gradients.
Together, our analyses show how differing sensitivity of fluvial and debris flow processes to sediment grain size impacts the partitioning of colluvial and fluvial regimes in headwater channel networks.

Related Results

Debris cover effect on the evolution of glaciation in the Northern Caucasus
Debris cover effect on the evolution of glaciation in the Northern Caucasus
<p>A common disadvantage of almost all global glacier models is that they ignore the explicit description of the debris cover on the heat exchange of the glacier surf...
Anthropogenic materials in the nests of Passerine birds: does the environment matter?
Anthropogenic materials in the nests of Passerine birds: does the environment matter?
Background. For several past decades, a notable pollution of the environment by different kinds of solid waste has been noted. The number of studies addressing the issue of utilisi...
Quantifying provenance of soil originated from mass movement on soil reservoir-bank using rare earth elements
Quantifying provenance of soil originated from mass movement on soil reservoir-bank using rare earth elements
Abstract:The reservoir-bank collapse has caused soil erosion and bank expansion in the lower Yellow River, which seriously affects the ecological environment and agricul...
Diffused and localized sediment production processes in a distributed transport model
Diffused and localized sediment production processes in a distributed transport model
<p>The identification of preferential sediment production areas within a river basin is essential to improve predictions of sediment load and its sources, and to iden...
Mapping debris thickness on alpine glaciers using UAV thermography and photogrammetry
Mapping debris thickness on alpine glaciers using UAV thermography and photogrammetry
<p>Supraglacial debris covers the tongue of many mountain glaciers. In the course of ongoing climate change and the rapid melting of glaciers, debris extent and thick...
Debris cover and the thinning of Kennicott Glacier, Alaska, Part A:in situ mass balance measurements
Debris cover and the thinning of Kennicott Glacier, Alaska, Part A:in situ mass balance measurements
Abstract. The mass balance of many Alaskan glaciers is perturbed by debris cover. Yet the effect of debris on glacier response to climate change in Alaska has largely been overlook...
Multiple superposed inverted landforms on Mars
Multiple superposed inverted landforms on Mars
<p><strong>Introduction:</strong> Inverted landforms are positive relief and well-preserved features; typically, their formation instigate...
Debris Flow Run-Out Prediction Based on the Shallow-Water Flow Numerical Model—A Case Study of Xulong Gully
Debris Flow Run-Out Prediction Based on the Shallow-Water Flow Numerical Model—A Case Study of Xulong Gully
Here we present a method for predicting debris flow run-out based on a numerical model for shallow water flows, using a case study conducted on Xulong Gully, a proposed dam site fo...

Back to Top