Javascript must be enabled to continue!
Production of Thermoplastic Composites reinforced with Posidonia Oceanica Fibers
View through CrossRef
This study investigates the development and characterization of a new biocomposite and biodegradable material based on natural fibers. This new biocomposite is composed of commercially available biodegradable polylactic acid (PLA) as a matrix and Posidonia Oceanica (PO) fibers collected from the coasts of Tunisia as reinforcement. This new material is produced by heating and pressing the two components in a special device. The use of PO, or sea balls, will allow exploiting one of the marine residues abundant on Tunisian beaches, instead of exploited industrially, and to preserve the beaches from debris given the impact of tourist activity in the Tunisian economy. The PLA/PO coupling allowed obtaining a biocomposite with promising mechanical properties. The improvement in maximum stress and strain after the addition of PO is one of the highlights of the results of this work.
Engineering, Technology & Applied Science Research
Title: Production of Thermoplastic Composites reinforced with Posidonia Oceanica Fibers
Description:
This study investigates the development and characterization of a new biocomposite and biodegradable material based on natural fibers.
This new biocomposite is composed of commercially available biodegradable polylactic acid (PLA) as a matrix and Posidonia Oceanica (PO) fibers collected from the coasts of Tunisia as reinforcement.
This new material is produced by heating and pressing the two components in a special device.
The use of PO, or sea balls, will allow exploiting one of the marine residues abundant on Tunisian beaches, instead of exploited industrially, and to preserve the beaches from debris given the impact of tourist activity in the Tunisian economy.
The PLA/PO coupling allowed obtaining a biocomposite with promising mechanical properties.
The improvement in maximum stress and strain after the addition of PO is one of the highlights of the results of this work.
Related Results
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
The goal of current research is to replace synthetic materials with natural, biodegradable, and renewable ones. Natural fiber composites are extensively studied due to their unique...
Influence of surface treatments and addition of a reactive agent on the properties of PLA/flax and PLA/bamboo composites
Influence of surface treatments and addition of a reactive agent on the properties of PLA/flax and PLA/bamboo composites
Polylactic acid (PLA) composites reinforced with 10 wt% of flax (FF) or bamboo (BF) fibers were prepared via an internal mixer and/or twin-screw extrusion. Alkali pretreated fibers...
Modeling Posidonia oceanica shoot density and rhizome primary production
Modeling Posidonia oceanica shoot density and rhizome primary production
AbstractPosidonia oceanica meadows rank among the most important and most productive ecosystems in the Mediterranean basin, due to their ecological role and to the goods and servic...
Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM
Mechanical Properties of GF/CF Hybrid ABS Composite by DFFIM
GF reinforced polymer composites to improve the mechanical properties by increasing fiber content, but there is a limit. On the contrary, CF reinforced polymer composites are super...
High performance bio-based composites : mechanical and environmental durability
High performance bio-based composites : mechanical and environmental durability
The presented work is a part of the ongoing effort on the development of high performance bio-based composites with enhanced durability, under static and dynamic mechanical loading...
Innovative Cementitious Composites Produced with Corn Straw Fiber: Effect of the Alkaline Treatments
Innovative Cementitious Composites Produced with Corn Straw Fiber: Effect of the Alkaline Treatments
Recently, numerous studies have been carried out with natural fibers in cementitious composites, due to the viability of using this type of fiber as a substitute for synthetic fibe...
Posidonia oceanica molecular adaptation to the light environment
Posidonia oceanica molecular adaptation to the light environment
Seagrass meadows are among the most productive ecosystems, with Posidonia oceanica being the most important species along the Mediterranean coastline. This species forms extensive ...
INVESTIGATION OF CARBON-ALUMINUM COMPOSITE WITH A BARRIER COATING ON CARBON FIBERS
INVESTIGATION OF CARBON-ALUMINUM COMPOSITE WITH A BARRIER COATING ON CARBON FIBERS
Barrier SiO2 coatings on the surface of carbon fibers were deposited by the sol-gel solutions (dip coating) based on tertraethoxysilane Si(C2H5O)4. The average thickness of the bar...

