Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Integrating AI and RPA in Pega for Intelligent Process Automation: A Comparative Study

View through CrossRef
The integration of Artificial Intelligence (AI) and Robotic Process Automation (RPA) within Pega’s Intelligent Process Automation (IPA) framework is fundamentally transforming enterprise workflow management. Traditional RPA, while effective in automating repetitive, rule-based tasks, lacks the adaptability and cognitive capabilities required for handling dynamic business processes. AI-enhanced RPA, on the other hand, leverages machine learning (ML), natural language processing (NLP), predictive analytics, and decision-making algorithms to enable self-learning automation systems that optimize workflows, reduce errors, and improve operational efficiency. This study conducts a comparative analysis between traditional RPA and AI-powered RPA within the Pega ecosystem, focusing on key performance indicators (KPIs) such as process execution time, accuracy, cost-effectiveness, scalability, and adaptability. By evaluating empirical data from real-world implementations, this research identifies the tangible benefits of AI-enhanced RPA in automating complex business operations across industries such as finance, healthcare, and e-commerce. The comparative assessment is structured around efficiency gains, error reduction, financial viability, and scalability, providing quantifiable insights into the transformative potential of AI-driven process automation. Using real-world case studies and industry benchmarks, this study demonstrates how AI-enabled automation in Pega improves workflow orchestration, predictive decision-making, and end-to-end automation of critical business functions. AI-powered bots can analyze data, predict process bottlenecks, automate exception handling, and enhance customer interactions, thereby surpassing the limitations of traditional RPA. The findings from this research emphasize the strategic advantages of AI-enhanced RPA in digital transformation efforts. Organizations that integrate AI-powered IPA within their automation strategies gain a competitive edge by achieving greater operational efficiency, reducing costs, and enabling scalable, intelligent automation solutions that adapt to changing business needs. This paper provides actionable recommendations for enterprises looking to leverage AI in Pega-driven automation frameworks, ensuring a seamless transition from rule-based automation to intelligent, self-optimizing workflows. Ultimately, the study concludes that AI-driven RPA in Pega is not just an incremental improvement over traditional RPA but represents a paradigm shift toward autonomous and cognitive automation, setting a new standard for enterprise-level process management.
Title: Integrating AI and RPA in Pega for Intelligent Process Automation: A Comparative Study
Description:
The integration of Artificial Intelligence (AI) and Robotic Process Automation (RPA) within Pega’s Intelligent Process Automation (IPA) framework is fundamentally transforming enterprise workflow management.
Traditional RPA, while effective in automating repetitive, rule-based tasks, lacks the adaptability and cognitive capabilities required for handling dynamic business processes.
AI-enhanced RPA, on the other hand, leverages machine learning (ML), natural language processing (NLP), predictive analytics, and decision-making algorithms to enable self-learning automation systems that optimize workflows, reduce errors, and improve operational efficiency.
This study conducts a comparative analysis between traditional RPA and AI-powered RPA within the Pega ecosystem, focusing on key performance indicators (KPIs) such as process execution time, accuracy, cost-effectiveness, scalability, and adaptability.
By evaluating empirical data from real-world implementations, this research identifies the tangible benefits of AI-enhanced RPA in automating complex business operations across industries such as finance, healthcare, and e-commerce.
The comparative assessment is structured around efficiency gains, error reduction, financial viability, and scalability, providing quantifiable insights into the transformative potential of AI-driven process automation.
Using real-world case studies and industry benchmarks, this study demonstrates how AI-enabled automation in Pega improves workflow orchestration, predictive decision-making, and end-to-end automation of critical business functions.
AI-powered bots can analyze data, predict process bottlenecks, automate exception handling, and enhance customer interactions, thereby surpassing the limitations of traditional RPA.
The findings from this research emphasize the strategic advantages of AI-enhanced RPA in digital transformation efforts.
Organizations that integrate AI-powered IPA within their automation strategies gain a competitive edge by achieving greater operational efficiency, reducing costs, and enabling scalable, intelligent automation solutions that adapt to changing business needs.
This paper provides actionable recommendations for enterprises looking to leverage AI in Pega-driven automation frameworks, ensuring a seamless transition from rule-based automation to intelligent, self-optimizing workflows.
Ultimately, the study concludes that AI-driven RPA in Pega is not just an incremental improvement over traditional RPA but represents a paradigm shift toward autonomous and cognitive automation, setting a new standard for enterprise-level process management.

Related Results

Primerjalna književnost na prelomu tisočletja
Primerjalna književnost na prelomu tisočletja
In a comprehensive and at times critical manner, this volume seeks to shed light on the development of events in Western (i.e., European and North American) comparative literature ...
RPA Implementation in Banking
RPA Implementation in Banking
In recent years, Robotic Process Automation (RPA) has attracted much attention. With predetermined programs, it can execute tasks that are rule-based, high-information, and repetit...
ACCELERATING DIGITAL TRANSFORMATION IN HIGHER EDUCATION WITH ROBOTIC PROCESS AUTOMATION
ACCELERATING DIGITAL TRANSFORMATION IN HIGHER EDUCATION WITH ROBOTIC PROCESS AUTOMATION
<p>Although the process of digitization in higher education began a long time ago, unfortunately, as various studies have pointed out, many higher education institutions are ...
ACCELERATING DIGITAL TRANSFORMATION IN HIGHER EDUCATION WITH ROBOTIC PROCESS AUTOMATION
ACCELERATING DIGITAL TRANSFORMATION IN HIGHER EDUCATION WITH ROBOTIC PROCESS AUTOMATION
<p>Although the process of digitization in higher education began a long time ago, unfortunately, as various studies have pointed out, many higher education institutions are ...
Robotic Process Automation (RPA) in Auditing: A Commentary
Robotic Process Automation (RPA) in Auditing: A Commentary
<p>We are living in an age of transformation. Audit firms are exploring new technologies to improve effectiveness and efficiency, thus improving audit quality. Among many tec...
Probe-Free Multiplexed RPA Detection Via Single-Molecule Nanopore Sensing and Deep Learning Classification
Probe-Free Multiplexed RPA Detection Via Single-Molecule Nanopore Sensing and Deep Learning Classification
ABSTRACTRecombinase Polymerase Amplification (RPA) is a rapid, sensitive, and isothermal method for nucleic acid amplification that has gained widespread use in diagnostic applicat...
Using RPA+BIM for High Efficient Operation of Smart Building's Equipment Room
Using RPA+BIM for High Efficient Operation of Smart Building's Equipment Room
Base on building information modeling(BIM) plus with Robotic process automation (RPA) technology is rapid development in smart building operations and maintenance (O&amp;M). RP...
AUTOMATIZACIÓN ROBÓTICA DE PROCESOS: UNA REVISIÓN SISTEMÁTICA DE LA LITERATURA
AUTOMATIZACIÓN ROBÓTICA DE PROCESOS: UNA REVISIÓN SISTEMÁTICA DE LA LITERATURA
La automatización robótica de procesos (RPA) ha surgido como una tecnología transformadora, que revoluciona los procesos comerciales tradicionales al automatizar tareas repetitivas...

Back to Top